This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear operator with a zero norm is identically zero. (Contributed by NM, 8-Feb-2006) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmlnop0.1 | ⊢ 𝑇 ∈ LinOp | |
| Assertion | nmlnop0iALT | ⊢ ( ( normop ‘ 𝑇 ) = 0 ↔ 𝑇 = 0hop ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmlnop0.1 | ⊢ 𝑇 ∈ LinOp | |
| 2 | normcl | ⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ 𝑥 ) ∈ ℝ ) | |
| 3 | 2 | recnd | ⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ 𝑥 ) ∈ ℂ ) |
| 4 | 3 | adantr | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( normℎ ‘ 𝑥 ) ∈ ℂ ) |
| 5 | norm-i | ⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ 𝑥 ) = 0 ↔ 𝑥 = 0ℎ ) ) | |
| 6 | fveq2 | ⊢ ( 𝑥 = 0ℎ → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 0ℎ ) ) | |
| 7 | 1 | lnop0i | ⊢ ( 𝑇 ‘ 0ℎ ) = 0ℎ |
| 8 | 6 7 | eqtrdi | ⊢ ( 𝑥 = 0ℎ → ( 𝑇 ‘ 𝑥 ) = 0ℎ ) |
| 9 | 5 8 | biimtrdi | ⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ 𝑥 ) = 0 → ( 𝑇 ‘ 𝑥 ) = 0ℎ ) ) |
| 10 | 9 | necon3d | ⊢ ( 𝑥 ∈ ℋ → ( ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ → ( normℎ ‘ 𝑥 ) ≠ 0 ) ) |
| 11 | 10 | imp | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( normℎ ‘ 𝑥 ) ≠ 0 ) |
| 12 | 4 11 | recne0d | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( 1 / ( normℎ ‘ 𝑥 ) ) ≠ 0 ) |
| 13 | simpr | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) | |
| 14 | 4 11 | reccld | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( 1 / ( normℎ ‘ 𝑥 ) ) ∈ ℂ ) |
| 15 | 1 | lnopfi | ⊢ 𝑇 : ℋ ⟶ ℋ |
| 16 | 15 | ffvelcdmi | ⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 17 | 16 | adantr | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 18 | hvmul0or | ⊢ ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) = 0ℎ ↔ ( ( 1 / ( normℎ ‘ 𝑥 ) ) = 0 ∨ ( 𝑇 ‘ 𝑥 ) = 0ℎ ) ) ) | |
| 19 | 14 17 18 | syl2anc | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) = 0ℎ ↔ ( ( 1 / ( normℎ ‘ 𝑥 ) ) = 0 ∨ ( 𝑇 ‘ 𝑥 ) = 0ℎ ) ) ) |
| 20 | 19 | necon3abid | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ≠ 0ℎ ↔ ¬ ( ( 1 / ( normℎ ‘ 𝑥 ) ) = 0 ∨ ( 𝑇 ‘ 𝑥 ) = 0ℎ ) ) ) |
| 21 | neanior | ⊢ ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ≠ 0 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) ↔ ¬ ( ( 1 / ( normℎ ‘ 𝑥 ) ) = 0 ∨ ( 𝑇 ‘ 𝑥 ) = 0ℎ ) ) | |
| 22 | 20 21 | bitr4di | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ≠ 0ℎ ↔ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ≠ 0 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) ) ) |
| 23 | 12 13 22 | mpbir2and | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ≠ 0ℎ ) |
| 24 | hvmulcl | ⊢ ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ) | |
| 25 | 14 17 24 | syl2anc | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ) |
| 26 | normgt0 | ⊢ ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ → ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ≠ 0ℎ ↔ 0 < ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ) | |
| 27 | 25 26 | syl | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ≠ 0ℎ ↔ 0 < ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 28 | 23 27 | mpbid | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → 0 < ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 29 | 28 | ex | ⊢ ( 𝑥 ∈ ℋ → ( ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ → 0 < ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 30 | 29 | adantl | ⊢ ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ → 0 < ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 31 | nmopsetretHIL | ⊢ ( 𝑇 : ℋ ⟶ ℋ → { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ ) | |
| 32 | 15 31 | ax-mp | ⊢ { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ |
| 33 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 34 | 32 33 | sstri | ⊢ { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ* |
| 35 | simpl | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → 𝑥 ∈ ℋ ) | |
| 36 | hvmulcl | ⊢ ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ∈ ℋ ) | |
| 37 | 14 35 36 | syl2anc | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ∈ ℋ ) |
| 38 | 8 | necon3i | ⊢ ( ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ → 𝑥 ≠ 0ℎ ) |
| 39 | norm1 | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑥 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) = 1 ) | |
| 40 | 38 39 | sylan2 | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) = 1 ) |
| 41 | 1re | ⊢ 1 ∈ ℝ | |
| 42 | 40 41 | eqeltrdi | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ∈ ℝ ) |
| 43 | eqle | ⊢ ( ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ∈ ℝ ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) = 1 ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ≤ 1 ) | |
| 44 | 42 40 43 | syl2anc | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ≤ 1 ) |
| 45 | 1 | lnopmuli | ⊢ ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) = ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 46 | 14 35 45 | syl2anc | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) = ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 47 | 46 | eqcomd | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ) |
| 48 | 47 | fveq2d | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ) ) |
| 49 | fveq2 | ⊢ ( 𝑧 = ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) → ( normℎ ‘ 𝑧 ) = ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ) | |
| 50 | 49 | breq1d | ⊢ ( 𝑧 = ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) → ( ( normℎ ‘ 𝑧 ) ≤ 1 ↔ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ≤ 1 ) ) |
| 51 | fveq2 | ⊢ ( 𝑧 = ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) → ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ) | |
| 52 | 51 | fveq2d | ⊢ ( 𝑧 = ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) = ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ) ) |
| 53 | 52 | eqeq2d | ⊢ ( 𝑧 = ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) → ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ↔ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ) ) ) |
| 54 | 50 53 | anbi12d | ⊢ ( 𝑧 = ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) → ( ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) ↔ ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ≤ 1 ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ) ) ) ) |
| 55 | 54 | rspcev | ⊢ ( ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ∈ ℋ ∧ ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ≤ 1 ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ) ) ) → ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 56 | 37 44 48 55 | syl12anc | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 57 | fvex | ⊢ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ∈ V | |
| 58 | eqeq1 | ⊢ ( 𝑦 = ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) → ( 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ↔ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) | |
| 59 | 58 | anbi2d | ⊢ ( 𝑦 = ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) → ( ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) ↔ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) ) |
| 60 | 59 | rexbidv | ⊢ ( 𝑦 = ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) → ( ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) ↔ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) ) |
| 61 | 57 60 | elab | ⊢ ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ∈ { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ↔ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 62 | 56 61 | sylibr | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ∈ { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ) |
| 63 | supxrub | ⊢ ( ( { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ* ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ∈ { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ≤ sup ( { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) | |
| 64 | 34 62 63 | sylancr | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ≤ sup ( { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| 65 | 64 | adantll | ⊢ ( ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ≤ sup ( { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| 66 | nmopval | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( normop ‘ 𝑇 ) = sup ( { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) | |
| 67 | 15 66 | ax-mp | ⊢ ( normop ‘ 𝑇 ) = sup ( { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) |
| 68 | 67 | eqeq1i | ⊢ ( ( normop ‘ 𝑇 ) = 0 ↔ sup ( { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) = 0 ) |
| 69 | 68 | biimpi | ⊢ ( ( normop ‘ 𝑇 ) = 0 → sup ( { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) = 0 ) |
| 70 | 69 | ad2antrr | ⊢ ( ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → sup ( { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) = 0 ) |
| 71 | 65 70 | breqtrd | ⊢ ( ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ≤ 0 ) |
| 72 | normcl | ⊢ ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ) | |
| 73 | 25 72 | syl | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 74 | 0re | ⊢ 0 ∈ ℝ | |
| 75 | lenlt | ⊢ ( ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ≤ 0 ↔ ¬ 0 < ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ) | |
| 76 | 73 74 75 | sylancl | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ≤ 0 ↔ ¬ 0 < ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 77 | 76 | adantll | ⊢ ( ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ≤ 0 ↔ ¬ 0 < ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 78 | 71 77 | mpbid | ⊢ ( ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ¬ 0 < ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 79 | 78 | ex | ⊢ ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ → ¬ 0 < ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 80 | 30 79 | pm2.65d | ⊢ ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) → ¬ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) |
| 81 | nne | ⊢ ( ¬ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ↔ ( 𝑇 ‘ 𝑥 ) = 0ℎ ) | |
| 82 | 80 81 | sylib | ⊢ ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) = 0ℎ ) |
| 83 | ho0val | ⊢ ( 𝑥 ∈ ℋ → ( 0hop ‘ 𝑥 ) = 0ℎ ) | |
| 84 | 83 | adantl | ⊢ ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) → ( 0hop ‘ 𝑥 ) = 0ℎ ) |
| 85 | 82 84 | eqtr4d | ⊢ ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) = ( 0hop ‘ 𝑥 ) ) |
| 86 | 85 | ralrimiva | ⊢ ( ( normop ‘ 𝑇 ) = 0 → ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 0hop ‘ 𝑥 ) ) |
| 87 | ffn | ⊢ ( 𝑇 : ℋ ⟶ ℋ → 𝑇 Fn ℋ ) | |
| 88 | 15 87 | ax-mp | ⊢ 𝑇 Fn ℋ |
| 89 | ho0f | ⊢ 0hop : ℋ ⟶ ℋ | |
| 90 | ffn | ⊢ ( 0hop : ℋ ⟶ ℋ → 0hop Fn ℋ ) | |
| 91 | 89 90 | ax-mp | ⊢ 0hop Fn ℋ |
| 92 | eqfnfv | ⊢ ( ( 𝑇 Fn ℋ ∧ 0hop Fn ℋ ) → ( 𝑇 = 0hop ↔ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 0hop ‘ 𝑥 ) ) ) | |
| 93 | 88 91 92 | mp2an | ⊢ ( 𝑇 = 0hop ↔ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 0hop ‘ 𝑥 ) ) |
| 94 | 86 93 | sylibr | ⊢ ( ( normop ‘ 𝑇 ) = 0 → 𝑇 = 0hop ) |
| 95 | fveq2 | ⊢ ( 𝑇 = 0hop → ( normop ‘ 𝑇 ) = ( normop ‘ 0hop ) ) | |
| 96 | nmop0 | ⊢ ( normop ‘ 0hop ) = 0 | |
| 97 | 95 96 | eqtrdi | ⊢ ( 𝑇 = 0hop → ( normop ‘ 𝑇 ) = 0 ) |
| 98 | 94 97 | impbii | ⊢ ( ( normop ‘ 𝑇 ) = 0 ↔ 𝑇 = 0hop ) |