This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the zero Hilbert space operator (null projector). Remark in Beran p. 111. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ho0val | ⊢ ( 𝐴 ∈ ℋ → ( 0hop ‘ 𝐴 ) = 0ℎ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | choc1 | ⊢ ( ⊥ ‘ ℋ ) = 0ℋ | |
| 2 | 1 | fveq2i | ⊢ ( projℎ ‘ ( ⊥ ‘ ℋ ) ) = ( projℎ ‘ 0ℋ ) |
| 3 | df-h0op | ⊢ 0hop = ( projℎ ‘ 0ℋ ) | |
| 4 | 2 3 | eqtr4i | ⊢ ( projℎ ‘ ( ⊥ ‘ ℋ ) ) = 0hop |
| 5 | 4 | fveq1i | ⊢ ( ( projℎ ‘ ( ⊥ ‘ ℋ ) ) ‘ 𝐴 ) = ( 0hop ‘ 𝐴 ) |
| 6 | helch | ⊢ ℋ ∈ Cℋ | |
| 7 | pjo | ⊢ ( ( ℋ ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ ( ⊥ ‘ ℋ ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ) ) | |
| 8 | 6 7 | mpan | ⊢ ( 𝐴 ∈ ℋ → ( ( projℎ ‘ ( ⊥ ‘ ℋ ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ) ) |
| 9 | 5 8 | eqtr3id | ⊢ ( 𝐴 ∈ ℋ → ( 0hop ‘ 𝐴 ) = ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ) ) |
| 10 | 6 | pjhcli | ⊢ ( 𝐴 ∈ ℋ → ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ∈ ℋ ) |
| 11 | hvsubid | ⊢ ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ∈ ℋ → ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ) = 0ℎ ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐴 ∈ ℋ → ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ) = 0ℎ ) |
| 13 | 9 12 | eqtrd | ⊢ ( 𝐴 ∈ ℋ → ( 0hop ‘ 𝐴 ) = 0ℎ ) |