This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear operator with a zero norm is identically zero. (Contributed by NM, 8-Feb-2006) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmlnop0.1 | |- T e. LinOp |
|
| Assertion | nmlnop0iALT | |- ( ( normop ` T ) = 0 <-> T = 0hop ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmlnop0.1 | |- T e. LinOp |
|
| 2 | normcl | |- ( x e. ~H -> ( normh ` x ) e. RR ) |
|
| 3 | 2 | recnd | |- ( x e. ~H -> ( normh ` x ) e. CC ) |
| 4 | 3 | adantr | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( normh ` x ) e. CC ) |
| 5 | norm-i | |- ( x e. ~H -> ( ( normh ` x ) = 0 <-> x = 0h ) ) |
|
| 6 | fveq2 | |- ( x = 0h -> ( T ` x ) = ( T ` 0h ) ) |
|
| 7 | 1 | lnop0i | |- ( T ` 0h ) = 0h |
| 8 | 6 7 | eqtrdi | |- ( x = 0h -> ( T ` x ) = 0h ) |
| 9 | 5 8 | biimtrdi | |- ( x e. ~H -> ( ( normh ` x ) = 0 -> ( T ` x ) = 0h ) ) |
| 10 | 9 | necon3d | |- ( x e. ~H -> ( ( T ` x ) =/= 0h -> ( normh ` x ) =/= 0 ) ) |
| 11 | 10 | imp | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( normh ` x ) =/= 0 ) |
| 12 | 4 11 | recne0d | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( 1 / ( normh ` x ) ) =/= 0 ) |
| 13 | simpr | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( T ` x ) =/= 0h ) |
|
| 14 | 4 11 | reccld | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( 1 / ( normh ` x ) ) e. CC ) |
| 15 | 1 | lnopfi | |- T : ~H --> ~H |
| 16 | 15 | ffvelcdmi | |- ( x e. ~H -> ( T ` x ) e. ~H ) |
| 17 | 16 | adantr | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( T ` x ) e. ~H ) |
| 18 | hvmul0or | |- ( ( ( 1 / ( normh ` x ) ) e. CC /\ ( T ` x ) e. ~H ) -> ( ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) = 0h <-> ( ( 1 / ( normh ` x ) ) = 0 \/ ( T ` x ) = 0h ) ) ) |
|
| 19 | 14 17 18 | syl2anc | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) = 0h <-> ( ( 1 / ( normh ` x ) ) = 0 \/ ( T ` x ) = 0h ) ) ) |
| 20 | 19 | necon3abid | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) =/= 0h <-> -. ( ( 1 / ( normh ` x ) ) = 0 \/ ( T ` x ) = 0h ) ) ) |
| 21 | neanior | |- ( ( ( 1 / ( normh ` x ) ) =/= 0 /\ ( T ` x ) =/= 0h ) <-> -. ( ( 1 / ( normh ` x ) ) = 0 \/ ( T ` x ) = 0h ) ) |
|
| 22 | 20 21 | bitr4di | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) =/= 0h <-> ( ( 1 / ( normh ` x ) ) =/= 0 /\ ( T ` x ) =/= 0h ) ) ) |
| 23 | 12 13 22 | mpbir2and | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) =/= 0h ) |
| 24 | hvmulcl | |- ( ( ( 1 / ( normh ` x ) ) e. CC /\ ( T ` x ) e. ~H ) -> ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) e. ~H ) |
|
| 25 | 14 17 24 | syl2anc | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) e. ~H ) |
| 26 | normgt0 | |- ( ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) e. ~H -> ( ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) =/= 0h <-> 0 < ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) ) ) |
|
| 27 | 25 26 | syl | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) =/= 0h <-> 0 < ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) ) ) |
| 28 | 23 27 | mpbid | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> 0 < ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) ) |
| 29 | 28 | ex | |- ( x e. ~H -> ( ( T ` x ) =/= 0h -> 0 < ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) ) ) |
| 30 | 29 | adantl | |- ( ( ( normop ` T ) = 0 /\ x e. ~H ) -> ( ( T ` x ) =/= 0h -> 0 < ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) ) ) |
| 31 | nmopsetretHIL | |- ( T : ~H --> ~H -> { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } C_ RR ) |
|
| 32 | 15 31 | ax-mp | |- { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } C_ RR |
| 33 | ressxr | |- RR C_ RR* |
|
| 34 | 32 33 | sstri | |- { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } C_ RR* |
| 35 | simpl | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> x e. ~H ) |
|
| 36 | hvmulcl | |- ( ( ( 1 / ( normh ` x ) ) e. CC /\ x e. ~H ) -> ( ( 1 / ( normh ` x ) ) .h x ) e. ~H ) |
|
| 37 | 14 35 36 | syl2anc | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( ( 1 / ( normh ` x ) ) .h x ) e. ~H ) |
| 38 | 8 | necon3i | |- ( ( T ` x ) =/= 0h -> x =/= 0h ) |
| 39 | norm1 | |- ( ( x e. ~H /\ x =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) = 1 ) |
|
| 40 | 38 39 | sylan2 | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) = 1 ) |
| 41 | 1re | |- 1 e. RR |
|
| 42 | 40 41 | eqeltrdi | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) e. RR ) |
| 43 | eqle | |- ( ( ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) e. RR /\ ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) = 1 ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) <_ 1 ) |
|
| 44 | 42 40 43 | syl2anc | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) <_ 1 ) |
| 45 | 1 | lnopmuli | |- ( ( ( 1 / ( normh ` x ) ) e. CC /\ x e. ~H ) -> ( T ` ( ( 1 / ( normh ` x ) ) .h x ) ) = ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) |
| 46 | 14 35 45 | syl2anc | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( T ` ( ( 1 / ( normh ` x ) ) .h x ) ) = ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) |
| 47 | 46 | eqcomd | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) = ( T ` ( ( 1 / ( normh ` x ) ) .h x ) ) ) |
| 48 | 47 | fveq2d | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) = ( normh ` ( T ` ( ( 1 / ( normh ` x ) ) .h x ) ) ) ) |
| 49 | fveq2 | |- ( z = ( ( 1 / ( normh ` x ) ) .h x ) -> ( normh ` z ) = ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) ) |
|
| 50 | 49 | breq1d | |- ( z = ( ( 1 / ( normh ` x ) ) .h x ) -> ( ( normh ` z ) <_ 1 <-> ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) <_ 1 ) ) |
| 51 | fveq2 | |- ( z = ( ( 1 / ( normh ` x ) ) .h x ) -> ( T ` z ) = ( T ` ( ( 1 / ( normh ` x ) ) .h x ) ) ) |
|
| 52 | 51 | fveq2d | |- ( z = ( ( 1 / ( normh ` x ) ) .h x ) -> ( normh ` ( T ` z ) ) = ( normh ` ( T ` ( ( 1 / ( normh ` x ) ) .h x ) ) ) ) |
| 53 | 52 | eqeq2d | |- ( z = ( ( 1 / ( normh ` x ) ) .h x ) -> ( ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) = ( normh ` ( T ` z ) ) <-> ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) = ( normh ` ( T ` ( ( 1 / ( normh ` x ) ) .h x ) ) ) ) ) |
| 54 | 50 53 | anbi12d | |- ( z = ( ( 1 / ( normh ` x ) ) .h x ) -> ( ( ( normh ` z ) <_ 1 /\ ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) = ( normh ` ( T ` z ) ) ) <-> ( ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) <_ 1 /\ ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) = ( normh ` ( T ` ( ( 1 / ( normh ` x ) ) .h x ) ) ) ) ) ) |
| 55 | 54 | rspcev | |- ( ( ( ( 1 / ( normh ` x ) ) .h x ) e. ~H /\ ( ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) <_ 1 /\ ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) = ( normh ` ( T ` ( ( 1 / ( normh ` x ) ) .h x ) ) ) ) ) -> E. z e. ~H ( ( normh ` z ) <_ 1 /\ ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) = ( normh ` ( T ` z ) ) ) ) |
| 56 | 37 44 48 55 | syl12anc | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> E. z e. ~H ( ( normh ` z ) <_ 1 /\ ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) = ( normh ` ( T ` z ) ) ) ) |
| 57 | fvex | |- ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) e. _V |
|
| 58 | eqeq1 | |- ( y = ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) -> ( y = ( normh ` ( T ` z ) ) <-> ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) = ( normh ` ( T ` z ) ) ) ) |
|
| 59 | 58 | anbi2d | |- ( y = ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) -> ( ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) <-> ( ( normh ` z ) <_ 1 /\ ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) = ( normh ` ( T ` z ) ) ) ) ) |
| 60 | 59 | rexbidv | |- ( y = ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) -> ( E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) <-> E. z e. ~H ( ( normh ` z ) <_ 1 /\ ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) = ( normh ` ( T ` z ) ) ) ) ) |
| 61 | 57 60 | elab | |- ( ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) e. { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } <-> E. z e. ~H ( ( normh ` z ) <_ 1 /\ ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) = ( normh ` ( T ` z ) ) ) ) |
| 62 | 56 61 | sylibr | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) e. { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } ) |
| 63 | supxrub | |- ( ( { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } C_ RR* /\ ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) e. { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) <_ sup ( { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } , RR* , < ) ) |
|
| 64 | 34 62 63 | sylancr | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) <_ sup ( { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } , RR* , < ) ) |
| 65 | 64 | adantll | |- ( ( ( ( normop ` T ) = 0 /\ x e. ~H ) /\ ( T ` x ) =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) <_ sup ( { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } , RR* , < ) ) |
| 66 | nmopval | |- ( T : ~H --> ~H -> ( normop ` T ) = sup ( { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } , RR* , < ) ) |
|
| 67 | 15 66 | ax-mp | |- ( normop ` T ) = sup ( { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } , RR* , < ) |
| 68 | 67 | eqeq1i | |- ( ( normop ` T ) = 0 <-> sup ( { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } , RR* , < ) = 0 ) |
| 69 | 68 | biimpi | |- ( ( normop ` T ) = 0 -> sup ( { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } , RR* , < ) = 0 ) |
| 70 | 69 | ad2antrr | |- ( ( ( ( normop ` T ) = 0 /\ x e. ~H ) /\ ( T ` x ) =/= 0h ) -> sup ( { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } , RR* , < ) = 0 ) |
| 71 | 65 70 | breqtrd | |- ( ( ( ( normop ` T ) = 0 /\ x e. ~H ) /\ ( T ` x ) =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) <_ 0 ) |
| 72 | normcl | |- ( ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) e. ~H -> ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) e. RR ) |
|
| 73 | 25 72 | syl | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) e. RR ) |
| 74 | 0re | |- 0 e. RR |
|
| 75 | lenlt | |- ( ( ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) e. RR /\ 0 e. RR ) -> ( ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) <_ 0 <-> -. 0 < ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) ) ) |
|
| 76 | 73 74 75 | sylancl | |- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) <_ 0 <-> -. 0 < ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) ) ) |
| 77 | 76 | adantll | |- ( ( ( ( normop ` T ) = 0 /\ x e. ~H ) /\ ( T ` x ) =/= 0h ) -> ( ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) <_ 0 <-> -. 0 < ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) ) ) |
| 78 | 71 77 | mpbid | |- ( ( ( ( normop ` T ) = 0 /\ x e. ~H ) /\ ( T ` x ) =/= 0h ) -> -. 0 < ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) ) |
| 79 | 78 | ex | |- ( ( ( normop ` T ) = 0 /\ x e. ~H ) -> ( ( T ` x ) =/= 0h -> -. 0 < ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) ) ) |
| 80 | 30 79 | pm2.65d | |- ( ( ( normop ` T ) = 0 /\ x e. ~H ) -> -. ( T ` x ) =/= 0h ) |
| 81 | nne | |- ( -. ( T ` x ) =/= 0h <-> ( T ` x ) = 0h ) |
|
| 82 | 80 81 | sylib | |- ( ( ( normop ` T ) = 0 /\ x e. ~H ) -> ( T ` x ) = 0h ) |
| 83 | ho0val | |- ( x e. ~H -> ( 0hop ` x ) = 0h ) |
|
| 84 | 83 | adantl | |- ( ( ( normop ` T ) = 0 /\ x e. ~H ) -> ( 0hop ` x ) = 0h ) |
| 85 | 82 84 | eqtr4d | |- ( ( ( normop ` T ) = 0 /\ x e. ~H ) -> ( T ` x ) = ( 0hop ` x ) ) |
| 86 | 85 | ralrimiva | |- ( ( normop ` T ) = 0 -> A. x e. ~H ( T ` x ) = ( 0hop ` x ) ) |
| 87 | ffn | |- ( T : ~H --> ~H -> T Fn ~H ) |
|
| 88 | 15 87 | ax-mp | |- T Fn ~H |
| 89 | ho0f | |- 0hop : ~H --> ~H |
|
| 90 | ffn | |- ( 0hop : ~H --> ~H -> 0hop Fn ~H ) |
|
| 91 | 89 90 | ax-mp | |- 0hop Fn ~H |
| 92 | eqfnfv | |- ( ( T Fn ~H /\ 0hop Fn ~H ) -> ( T = 0hop <-> A. x e. ~H ( T ` x ) = ( 0hop ` x ) ) ) |
|
| 93 | 88 91 92 | mp2an | |- ( T = 0hop <-> A. x e. ~H ( T ` x ) = ( 0hop ` x ) ) |
| 94 | 86 93 | sylibr | |- ( ( normop ` T ) = 0 -> T = 0hop ) |
| 95 | fveq2 | |- ( T = 0hop -> ( normop ` T ) = ( normop ` 0hop ) ) |
|
| 96 | nmop0 | |- ( normop ` 0hop ) = 0 |
|
| 97 | 95 96 | eqtrdi | |- ( T = 0hop -> ( normop ` T ) = 0 ) |
| 98 | 94 97 | impbii | |- ( ( normop ` T ) = 0 <-> T = 0hop ) |