This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 19-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvmul0or | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ↔ ( 𝐴 = 0 ∨ 𝐵 = 0ℎ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne | ⊢ ( 𝐴 ≠ 0 ↔ ¬ 𝐴 = 0 ) | |
| 2 | oveq2 | ⊢ ( ( 𝐴 ·ℎ 𝐵 ) = 0ℎ → ( ( 1 / 𝐴 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) = ( ( 1 / 𝐴 ) ·ℎ 0ℎ ) ) | |
| 3 | 2 | ad2antlr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ) ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) = ( ( 1 / 𝐴 ) ·ℎ 0ℎ ) ) |
| 4 | recid2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) · 𝐴 ) = 1 ) | |
| 5 | 4 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) ·ℎ 𝐵 ) = ( 1 ·ℎ 𝐵 ) ) |
| 6 | 5 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝐴 ≠ 0 ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) ·ℎ 𝐵 ) = ( 1 ·ℎ 𝐵 ) ) |
| 7 | reccl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℂ ) | |
| 8 | 7 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℂ ) |
| 9 | simpll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) | |
| 10 | simplr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝐴 ≠ 0 ) → 𝐵 ∈ ℋ ) | |
| 11 | ax-hvmulass | ⊢ ( ( ( 1 / 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) ·ℎ 𝐵 ) = ( ( 1 / 𝐴 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) ) | |
| 12 | 8 9 10 11 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝐴 ≠ 0 ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) ·ℎ 𝐵 ) = ( ( 1 / 𝐴 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) ) |
| 13 | ax-hvmulid | ⊢ ( 𝐵 ∈ ℋ → ( 1 ·ℎ 𝐵 ) = 𝐵 ) | |
| 14 | 13 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝐴 ≠ 0 ) → ( 1 ·ℎ 𝐵 ) = 𝐵 ) |
| 15 | 6 12 14 | 3eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) = 𝐵 ) |
| 16 | 15 | adantlr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ) ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) = 𝐵 ) |
| 17 | hvmul0 | ⊢ ( ( 1 / 𝐴 ) ∈ ℂ → ( ( 1 / 𝐴 ) ·ℎ 0ℎ ) = 0ℎ ) | |
| 18 | 7 17 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) ·ℎ 0ℎ ) = 0ℎ ) |
| 19 | 18 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) ·ℎ 0ℎ ) = 0ℎ ) |
| 20 | 19 | adantlr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ) ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) ·ℎ 0ℎ ) = 0ℎ ) |
| 21 | 3 16 20 | 3eqtr3d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ) ∧ 𝐴 ≠ 0 ) → 𝐵 = 0ℎ ) |
| 22 | 21 | ex | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ) → ( 𝐴 ≠ 0 → 𝐵 = 0ℎ ) ) |
| 23 | 1 22 | biimtrrid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ) → ( ¬ 𝐴 = 0 → 𝐵 = 0ℎ ) ) |
| 24 | 23 | orrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ) → ( 𝐴 = 0 ∨ 𝐵 = 0ℎ ) ) |
| 25 | 24 | ex | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) = 0ℎ → ( 𝐴 = 0 ∨ 𝐵 = 0ℎ ) ) ) |
| 26 | ax-hvmul0 | ⊢ ( 𝐵 ∈ ℋ → ( 0 ·ℎ 𝐵 ) = 0ℎ ) | |
| 27 | oveq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 ·ℎ 𝐵 ) = ( 0 ·ℎ 𝐵 ) ) | |
| 28 | 27 | eqeq1d | ⊢ ( 𝐴 = 0 → ( ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ↔ ( 0 ·ℎ 𝐵 ) = 0ℎ ) ) |
| 29 | 26 28 | syl5ibrcom | ⊢ ( 𝐵 ∈ ℋ → ( 𝐴 = 0 → ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ) ) |
| 30 | 29 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 = 0 → ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ) ) |
| 31 | hvmul0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ·ℎ 0ℎ ) = 0ℎ ) | |
| 32 | oveq2 | ⊢ ( 𝐵 = 0ℎ → ( 𝐴 ·ℎ 𝐵 ) = ( 𝐴 ·ℎ 0ℎ ) ) | |
| 33 | 32 | eqeq1d | ⊢ ( 𝐵 = 0ℎ → ( ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ↔ ( 𝐴 ·ℎ 0ℎ ) = 0ℎ ) ) |
| 34 | 31 33 | syl5ibrcom | ⊢ ( 𝐴 ∈ ℂ → ( 𝐵 = 0ℎ → ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ) ) |
| 35 | 34 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐵 = 0ℎ → ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ) ) |
| 36 | 30 35 | jaod | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 = 0 ∨ 𝐵 = 0ℎ ) → ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ) ) |
| 37 | 25 36 | impbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ↔ ( 𝐴 = 0 ∨ 𝐵 = 0ℎ ) ) ) |