This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of the zero operator is zero. (Contributed by NM, 8-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmop0 | ⊢ ( normop ‘ 0hop ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ho0f | ⊢ 0hop : ℋ ⟶ ℋ | |
| 2 | nmopval | ⊢ ( 0hop : ℋ ⟶ ℋ → ( normop ‘ 0hop ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 0hop ‘ 𝑦 ) ) ) } , ℝ* , < ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( normop ‘ 0hop ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 0hop ‘ 𝑦 ) ) ) } , ℝ* , < ) |
| 4 | ho0val | ⊢ ( 𝑦 ∈ ℋ → ( 0hop ‘ 𝑦 ) = 0ℎ ) | |
| 5 | 4 | fveq2d | ⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ ( 0hop ‘ 𝑦 ) ) = ( normℎ ‘ 0ℎ ) ) |
| 6 | norm0 | ⊢ ( normℎ ‘ 0ℎ ) = 0 | |
| 7 | 5 6 | eqtrdi | ⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ ( 0hop ‘ 𝑦 ) ) = 0 ) |
| 8 | 7 | eqeq2d | ⊢ ( 𝑦 ∈ ℋ → ( 𝑥 = ( normℎ ‘ ( 0hop ‘ 𝑦 ) ) ↔ 𝑥 = 0 ) ) |
| 9 | 8 | anbi2d | ⊢ ( 𝑦 ∈ ℋ → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 0hop ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = 0 ) ) ) |
| 10 | 9 | rexbiia | ⊢ ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 0hop ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = 0 ) ) |
| 11 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 12 | 0le1 | ⊢ 0 ≤ 1 | |
| 13 | fveq2 | ⊢ ( 𝑦 = 0ℎ → ( normℎ ‘ 𝑦 ) = ( normℎ ‘ 0ℎ ) ) | |
| 14 | 13 6 | eqtrdi | ⊢ ( 𝑦 = 0ℎ → ( normℎ ‘ 𝑦 ) = 0 ) |
| 15 | 14 | breq1d | ⊢ ( 𝑦 = 0ℎ → ( ( normℎ ‘ 𝑦 ) ≤ 1 ↔ 0 ≤ 1 ) ) |
| 16 | 15 | rspcev | ⊢ ( ( 0ℎ ∈ ℋ ∧ 0 ≤ 1 ) → ∃ 𝑦 ∈ ℋ ( normℎ ‘ 𝑦 ) ≤ 1 ) |
| 17 | 11 12 16 | mp2an | ⊢ ∃ 𝑦 ∈ ℋ ( normℎ ‘ 𝑦 ) ≤ 1 |
| 18 | r19.41v | ⊢ ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = 0 ) ↔ ( ∃ 𝑦 ∈ ℋ ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = 0 ) ) | |
| 19 | 17 18 | mpbiran | ⊢ ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = 0 ) ↔ 𝑥 = 0 ) |
| 20 | 10 19 | bitri | ⊢ ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 0hop ‘ 𝑦 ) ) ) ↔ 𝑥 = 0 ) |
| 21 | 20 | abbii | ⊢ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 0hop ‘ 𝑦 ) ) ) } = { 𝑥 ∣ 𝑥 = 0 } |
| 22 | df-sn | ⊢ { 0 } = { 𝑥 ∣ 𝑥 = 0 } | |
| 23 | 21 22 | eqtr4i | ⊢ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 0hop ‘ 𝑦 ) ) ) } = { 0 } |
| 24 | 23 | supeq1i | ⊢ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 0hop ‘ 𝑦 ) ) ) } , ℝ* , < ) = sup ( { 0 } , ℝ* , < ) |
| 25 | xrltso | ⊢ < Or ℝ* | |
| 26 | 0xr | ⊢ 0 ∈ ℝ* | |
| 27 | supsn | ⊢ ( ( < Or ℝ* ∧ 0 ∈ ℝ* ) → sup ( { 0 } , ℝ* , < ) = 0 ) | |
| 28 | 25 26 27 | mp2an | ⊢ sup ( { 0 } , ℝ* , < ) = 0 |
| 29 | 3 24 28 | 3eqtri | ⊢ ( normop ‘ 0hop ) = 0 |