This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 3.3(i) of Beran p. 97. (Contributed by NM, 29-Jul-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | norm-i | ⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) = 0 ↔ 𝐴 = 0ℎ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normgt0 | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0ℎ ↔ 0 < ( normℎ ‘ 𝐴 ) ) ) | |
| 2 | normcl | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℝ ) | |
| 3 | normge0 | ⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝐴 ) ) | |
| 4 | 0re | ⊢ 0 ∈ ℝ | |
| 5 | leltne | ⊢ ( ( 0 ∈ ℝ ∧ ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ 𝐴 ) ) → ( 0 < ( normℎ ‘ 𝐴 ) ↔ ( normℎ ‘ 𝐴 ) ≠ 0 ) ) | |
| 6 | 4 5 | mp3an1 | ⊢ ( ( ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ 𝐴 ) ) → ( 0 < ( normℎ ‘ 𝐴 ) ↔ ( normℎ ‘ 𝐴 ) ≠ 0 ) ) |
| 7 | 2 3 6 | syl2anc | ⊢ ( 𝐴 ∈ ℋ → ( 0 < ( normℎ ‘ 𝐴 ) ↔ ( normℎ ‘ 𝐴 ) ≠ 0 ) ) |
| 8 | 1 7 | bitrd | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0ℎ ↔ ( normℎ ‘ 𝐴 ) ≠ 0 ) ) |
| 9 | 8 | necon4bid | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 = 0ℎ ↔ ( normℎ ‘ 𝐴 ) = 0 ) ) |
| 10 | 9 | bicomd | ⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) = 0 ↔ 𝐴 = 0ℎ ) ) |