This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by AV, 31-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulginvcom.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulginvcom.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulginvcom.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| Assertion | mulginvcom | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulginvcom.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulginvcom.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulginvcom.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 4 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 0 · ( 𝐼 ‘ 𝑋 ) ) ) | |
| 5 | fvoveq1 | ⊢ ( 𝑥 = 0 → ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) = ( 𝐼 ‘ ( 0 · 𝑋 ) ) ) | |
| 6 | 4 5 | eqeq12d | ⊢ ( 𝑥 = 0 → ( ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) ↔ ( 0 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 0 · 𝑋 ) ) ) ) |
| 7 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) | |
| 8 | fvoveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) | |
| 9 | 7 8 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) ↔ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) ) |
| 10 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) ) | |
| 11 | fvoveq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) = ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) ) | |
| 12 | 10 11 | eqeq12d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) ↔ ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) ) ) |
| 13 | oveq1 | ⊢ ( 𝑥 = - 𝑦 → ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) | |
| 14 | fvoveq1 | ⊢ ( 𝑥 = - 𝑦 → ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) = ( 𝐼 ‘ ( - 𝑦 · 𝑋 ) ) ) | |
| 15 | 13 14 | eqeq12d | ⊢ ( 𝑥 = - 𝑦 → ( ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) ↔ ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( - 𝑦 · 𝑋 ) ) ) ) |
| 16 | oveq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) ) | |
| 17 | fvoveq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) | |
| 18 | 16 17 | eqeq12d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) ↔ ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) ) |
| 19 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 20 | 19 3 | grpinvid | ⊢ ( 𝐺 ∈ Grp → ( 𝐼 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 21 | 20 | eqcomd | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) = ( 𝐼 ‘ ( 0g ‘ 𝐺 ) ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0g ‘ 𝐺 ) = ( 𝐼 ‘ ( 0g ‘ 𝐺 ) ) ) |
| 23 | 1 3 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 24 | 1 19 2 | mulg0 | ⊢ ( ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 → ( 0 · ( 𝐼 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
| 25 | 23 24 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 · ( 𝐼 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
| 26 | 1 19 2 | mulg0 | ⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 27 | 26 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 28 | 27 | fveq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( 0 · 𝑋 ) ) = ( 𝐼 ‘ ( 0g ‘ 𝐺 ) ) ) |
| 29 | 22 25 28 | 3eqtr4d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 0 · 𝑋 ) ) ) |
| 30 | oveq2 | ⊢ ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) ) | |
| 31 | 30 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) ) |
| 32 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 33 | 32 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → 𝐺 ∈ Mnd ) |
| 34 | simp2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → 𝑦 ∈ ℕ0 ) | |
| 35 | 23 | 3adant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 36 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 37 | 1 2 36 | mulgnn0p1 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) |
| 38 | 33 34 35 37 | syl3anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) |
| 39 | simp1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → 𝐺 ∈ Grp ) | |
| 40 | nn0z | ⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ ) | |
| 41 | 40 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → 𝑦 ∈ ℤ ) |
| 42 | 1 2 36 | mulgaddcom | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 43 | 39 41 35 42 | syl3anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 44 | 38 43 | eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 45 | 44 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 46 | 1 2 36 | mulgnn0p1 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑦 + 1 ) · 𝑋 ) = ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) |
| 47 | 32 46 | syl3an1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑦 + 1 ) · 𝑋 ) = ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) |
| 48 | 47 | fveq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) = ( 𝐼 ‘ ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) ) |
| 49 | 1 2 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 · 𝑋 ) ∈ 𝐵 ) |
| 50 | 40 49 | syl3an2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 · 𝑋 ) ∈ 𝐵 ) |
| 51 | 1 36 3 | grpinvadd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 · 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) ) |
| 52 | 50 51 | syld3an2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) ) |
| 53 | 48 52 | eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) ) |
| 54 | 53 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) ) |
| 55 | 31 45 54 | 3eqtr4d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) ) |
| 56 | 55 | 3exp1 | ⊢ ( 𝐺 ∈ Grp → ( 𝑦 ∈ ℕ0 → ( 𝑋 ∈ 𝐵 → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) → ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) ) ) ) ) |
| 57 | 56 | com23 | ⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐵 → ( 𝑦 ∈ ℕ0 → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) → ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) ) ) ) ) |
| 58 | 57 | imp | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 ∈ ℕ0 → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) → ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) ) ) ) |
| 59 | nnz | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) | |
| 60 | 23 | 3adant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 61 | 1 2 3 | mulgneg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 62 | 60 61 | syld3an3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 63 | 62 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 64 | 1 2 3 | mulgneg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑦 · 𝑋 ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) |
| 65 | 64 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( - 𝑦 · 𝑋 ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) |
| 66 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) | |
| 67 | 65 66 | eqtr4d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( - 𝑦 · 𝑋 ) = ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) |
| 68 | 67 | fveq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( 𝐼 ‘ ( - 𝑦 · 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 69 | 63 68 | eqtr4d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( - 𝑦 · 𝑋 ) ) ) |
| 70 | 69 | 3exp1 | ⊢ ( 𝐺 ∈ Grp → ( 𝑦 ∈ ℤ → ( 𝑋 ∈ 𝐵 → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) → ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( - 𝑦 · 𝑋 ) ) ) ) ) ) |
| 71 | 70 | com23 | ⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐵 → ( 𝑦 ∈ ℤ → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) → ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( - 𝑦 · 𝑋 ) ) ) ) ) ) |
| 72 | 71 | imp | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 ∈ ℤ → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) → ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( - 𝑦 · 𝑋 ) ) ) ) ) |
| 73 | 59 72 | syl5 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 ∈ ℕ → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) → ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( - 𝑦 · 𝑋 ) ) ) ) ) |
| 74 | 6 9 12 15 18 29 58 73 | zindd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ∈ ℤ → ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) ) |
| 75 | 74 | ex | ⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐵 → ( 𝑁 ∈ ℤ → ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) ) ) |
| 76 | 75 | com23 | ⊢ ( 𝐺 ∈ Grp → ( 𝑁 ∈ ℤ → ( 𝑋 ∈ 𝐵 → ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) ) ) |
| 77 | 76 | 3imp | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |