This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by AV, 31-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulginvcom.b | |- B = ( Base ` G ) |
|
| mulginvcom.t | |- .x. = ( .g ` G ) |
||
| mulginvcom.i | |- I = ( invg ` G ) |
||
| Assertion | mulginvcom | |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( N .x. ( I ` X ) ) = ( I ` ( N .x. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulginvcom.b | |- B = ( Base ` G ) |
|
| 2 | mulginvcom.t | |- .x. = ( .g ` G ) |
|
| 3 | mulginvcom.i | |- I = ( invg ` G ) |
|
| 4 | oveq1 | |- ( x = 0 -> ( x .x. ( I ` X ) ) = ( 0 .x. ( I ` X ) ) ) |
|
| 5 | fvoveq1 | |- ( x = 0 -> ( I ` ( x .x. X ) ) = ( I ` ( 0 .x. X ) ) ) |
|
| 6 | 4 5 | eqeq12d | |- ( x = 0 -> ( ( x .x. ( I ` X ) ) = ( I ` ( x .x. X ) ) <-> ( 0 .x. ( I ` X ) ) = ( I ` ( 0 .x. X ) ) ) ) |
| 7 | oveq1 | |- ( x = y -> ( x .x. ( I ` X ) ) = ( y .x. ( I ` X ) ) ) |
|
| 8 | fvoveq1 | |- ( x = y -> ( I ` ( x .x. X ) ) = ( I ` ( y .x. X ) ) ) |
|
| 9 | 7 8 | eqeq12d | |- ( x = y -> ( ( x .x. ( I ` X ) ) = ( I ` ( x .x. X ) ) <-> ( y .x. ( I ` X ) ) = ( I ` ( y .x. X ) ) ) ) |
| 10 | oveq1 | |- ( x = ( y + 1 ) -> ( x .x. ( I ` X ) ) = ( ( y + 1 ) .x. ( I ` X ) ) ) |
|
| 11 | fvoveq1 | |- ( x = ( y + 1 ) -> ( I ` ( x .x. X ) ) = ( I ` ( ( y + 1 ) .x. X ) ) ) |
|
| 12 | 10 11 | eqeq12d | |- ( x = ( y + 1 ) -> ( ( x .x. ( I ` X ) ) = ( I ` ( x .x. X ) ) <-> ( ( y + 1 ) .x. ( I ` X ) ) = ( I ` ( ( y + 1 ) .x. X ) ) ) ) |
| 13 | oveq1 | |- ( x = -u y -> ( x .x. ( I ` X ) ) = ( -u y .x. ( I ` X ) ) ) |
|
| 14 | fvoveq1 | |- ( x = -u y -> ( I ` ( x .x. X ) ) = ( I ` ( -u y .x. X ) ) ) |
|
| 15 | 13 14 | eqeq12d | |- ( x = -u y -> ( ( x .x. ( I ` X ) ) = ( I ` ( x .x. X ) ) <-> ( -u y .x. ( I ` X ) ) = ( I ` ( -u y .x. X ) ) ) ) |
| 16 | oveq1 | |- ( x = N -> ( x .x. ( I ` X ) ) = ( N .x. ( I ` X ) ) ) |
|
| 17 | fvoveq1 | |- ( x = N -> ( I ` ( x .x. X ) ) = ( I ` ( N .x. X ) ) ) |
|
| 18 | 16 17 | eqeq12d | |- ( x = N -> ( ( x .x. ( I ` X ) ) = ( I ` ( x .x. X ) ) <-> ( N .x. ( I ` X ) ) = ( I ` ( N .x. X ) ) ) ) |
| 19 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 20 | 19 3 | grpinvid | |- ( G e. Grp -> ( I ` ( 0g ` G ) ) = ( 0g ` G ) ) |
| 21 | 20 | eqcomd | |- ( G e. Grp -> ( 0g ` G ) = ( I ` ( 0g ` G ) ) ) |
| 22 | 21 | adantr | |- ( ( G e. Grp /\ X e. B ) -> ( 0g ` G ) = ( I ` ( 0g ` G ) ) ) |
| 23 | 1 3 | grpinvcl | |- ( ( G e. Grp /\ X e. B ) -> ( I ` X ) e. B ) |
| 24 | 1 19 2 | mulg0 | |- ( ( I ` X ) e. B -> ( 0 .x. ( I ` X ) ) = ( 0g ` G ) ) |
| 25 | 23 24 | syl | |- ( ( G e. Grp /\ X e. B ) -> ( 0 .x. ( I ` X ) ) = ( 0g ` G ) ) |
| 26 | 1 19 2 | mulg0 | |- ( X e. B -> ( 0 .x. X ) = ( 0g ` G ) ) |
| 27 | 26 | adantl | |- ( ( G e. Grp /\ X e. B ) -> ( 0 .x. X ) = ( 0g ` G ) ) |
| 28 | 27 | fveq2d | |- ( ( G e. Grp /\ X e. B ) -> ( I ` ( 0 .x. X ) ) = ( I ` ( 0g ` G ) ) ) |
| 29 | 22 25 28 | 3eqtr4d | |- ( ( G e. Grp /\ X e. B ) -> ( 0 .x. ( I ` X ) ) = ( I ` ( 0 .x. X ) ) ) |
| 30 | oveq2 | |- ( ( y .x. ( I ` X ) ) = ( I ` ( y .x. X ) ) -> ( ( I ` X ) ( +g ` G ) ( y .x. ( I ` X ) ) ) = ( ( I ` X ) ( +g ` G ) ( I ` ( y .x. X ) ) ) ) |
|
| 31 | 30 | adantl | |- ( ( ( G e. Grp /\ y e. NN0 /\ X e. B ) /\ ( y .x. ( I ` X ) ) = ( I ` ( y .x. X ) ) ) -> ( ( I ` X ) ( +g ` G ) ( y .x. ( I ` X ) ) ) = ( ( I ` X ) ( +g ` G ) ( I ` ( y .x. X ) ) ) ) |
| 32 | grpmnd | |- ( G e. Grp -> G e. Mnd ) |
|
| 33 | 32 | 3ad2ant1 | |- ( ( G e. Grp /\ y e. NN0 /\ X e. B ) -> G e. Mnd ) |
| 34 | simp2 | |- ( ( G e. Grp /\ y e. NN0 /\ X e. B ) -> y e. NN0 ) |
|
| 35 | 23 | 3adant2 | |- ( ( G e. Grp /\ y e. NN0 /\ X e. B ) -> ( I ` X ) e. B ) |
| 36 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 37 | 1 2 36 | mulgnn0p1 | |- ( ( G e. Mnd /\ y e. NN0 /\ ( I ` X ) e. B ) -> ( ( y + 1 ) .x. ( I ` X ) ) = ( ( y .x. ( I ` X ) ) ( +g ` G ) ( I ` X ) ) ) |
| 38 | 33 34 35 37 | syl3anc | |- ( ( G e. Grp /\ y e. NN0 /\ X e. B ) -> ( ( y + 1 ) .x. ( I ` X ) ) = ( ( y .x. ( I ` X ) ) ( +g ` G ) ( I ` X ) ) ) |
| 39 | simp1 | |- ( ( G e. Grp /\ y e. NN0 /\ X e. B ) -> G e. Grp ) |
|
| 40 | nn0z | |- ( y e. NN0 -> y e. ZZ ) |
|
| 41 | 40 | 3ad2ant2 | |- ( ( G e. Grp /\ y e. NN0 /\ X e. B ) -> y e. ZZ ) |
| 42 | 1 2 36 | mulgaddcom | |- ( ( G e. Grp /\ y e. ZZ /\ ( I ` X ) e. B ) -> ( ( y .x. ( I ` X ) ) ( +g ` G ) ( I ` X ) ) = ( ( I ` X ) ( +g ` G ) ( y .x. ( I ` X ) ) ) ) |
| 43 | 39 41 35 42 | syl3anc | |- ( ( G e. Grp /\ y e. NN0 /\ X e. B ) -> ( ( y .x. ( I ` X ) ) ( +g ` G ) ( I ` X ) ) = ( ( I ` X ) ( +g ` G ) ( y .x. ( I ` X ) ) ) ) |
| 44 | 38 43 | eqtrd | |- ( ( G e. Grp /\ y e. NN0 /\ X e. B ) -> ( ( y + 1 ) .x. ( I ` X ) ) = ( ( I ` X ) ( +g ` G ) ( y .x. ( I ` X ) ) ) ) |
| 45 | 44 | adantr | |- ( ( ( G e. Grp /\ y e. NN0 /\ X e. B ) /\ ( y .x. ( I ` X ) ) = ( I ` ( y .x. X ) ) ) -> ( ( y + 1 ) .x. ( I ` X ) ) = ( ( I ` X ) ( +g ` G ) ( y .x. ( I ` X ) ) ) ) |
| 46 | 1 2 36 | mulgnn0p1 | |- ( ( G e. Mnd /\ y e. NN0 /\ X e. B ) -> ( ( y + 1 ) .x. X ) = ( ( y .x. X ) ( +g ` G ) X ) ) |
| 47 | 32 46 | syl3an1 | |- ( ( G e. Grp /\ y e. NN0 /\ X e. B ) -> ( ( y + 1 ) .x. X ) = ( ( y .x. X ) ( +g ` G ) X ) ) |
| 48 | 47 | fveq2d | |- ( ( G e. Grp /\ y e. NN0 /\ X e. B ) -> ( I ` ( ( y + 1 ) .x. X ) ) = ( I ` ( ( y .x. X ) ( +g ` G ) X ) ) ) |
| 49 | 1 2 | mulgcl | |- ( ( G e. Grp /\ y e. ZZ /\ X e. B ) -> ( y .x. X ) e. B ) |
| 50 | 40 49 | syl3an2 | |- ( ( G e. Grp /\ y e. NN0 /\ X e. B ) -> ( y .x. X ) e. B ) |
| 51 | 1 36 3 | grpinvadd | |- ( ( G e. Grp /\ ( y .x. X ) e. B /\ X e. B ) -> ( I ` ( ( y .x. X ) ( +g ` G ) X ) ) = ( ( I ` X ) ( +g ` G ) ( I ` ( y .x. X ) ) ) ) |
| 52 | 50 51 | syld3an2 | |- ( ( G e. Grp /\ y e. NN0 /\ X e. B ) -> ( I ` ( ( y .x. X ) ( +g ` G ) X ) ) = ( ( I ` X ) ( +g ` G ) ( I ` ( y .x. X ) ) ) ) |
| 53 | 48 52 | eqtrd | |- ( ( G e. Grp /\ y e. NN0 /\ X e. B ) -> ( I ` ( ( y + 1 ) .x. X ) ) = ( ( I ` X ) ( +g ` G ) ( I ` ( y .x. X ) ) ) ) |
| 54 | 53 | adantr | |- ( ( ( G e. Grp /\ y e. NN0 /\ X e. B ) /\ ( y .x. ( I ` X ) ) = ( I ` ( y .x. X ) ) ) -> ( I ` ( ( y + 1 ) .x. X ) ) = ( ( I ` X ) ( +g ` G ) ( I ` ( y .x. X ) ) ) ) |
| 55 | 31 45 54 | 3eqtr4d | |- ( ( ( G e. Grp /\ y e. NN0 /\ X e. B ) /\ ( y .x. ( I ` X ) ) = ( I ` ( y .x. X ) ) ) -> ( ( y + 1 ) .x. ( I ` X ) ) = ( I ` ( ( y + 1 ) .x. X ) ) ) |
| 56 | 55 | 3exp1 | |- ( G e. Grp -> ( y e. NN0 -> ( X e. B -> ( ( y .x. ( I ` X ) ) = ( I ` ( y .x. X ) ) -> ( ( y + 1 ) .x. ( I ` X ) ) = ( I ` ( ( y + 1 ) .x. X ) ) ) ) ) ) |
| 57 | 56 | com23 | |- ( G e. Grp -> ( X e. B -> ( y e. NN0 -> ( ( y .x. ( I ` X ) ) = ( I ` ( y .x. X ) ) -> ( ( y + 1 ) .x. ( I ` X ) ) = ( I ` ( ( y + 1 ) .x. X ) ) ) ) ) ) |
| 58 | 57 | imp | |- ( ( G e. Grp /\ X e. B ) -> ( y e. NN0 -> ( ( y .x. ( I ` X ) ) = ( I ` ( y .x. X ) ) -> ( ( y + 1 ) .x. ( I ` X ) ) = ( I ` ( ( y + 1 ) .x. X ) ) ) ) ) |
| 59 | nnz | |- ( y e. NN -> y e. ZZ ) |
|
| 60 | 23 | 3adant2 | |- ( ( G e. Grp /\ y e. ZZ /\ X e. B ) -> ( I ` X ) e. B ) |
| 61 | 1 2 3 | mulgneg | |- ( ( G e. Grp /\ y e. ZZ /\ ( I ` X ) e. B ) -> ( -u y .x. ( I ` X ) ) = ( I ` ( y .x. ( I ` X ) ) ) ) |
| 62 | 60 61 | syld3an3 | |- ( ( G e. Grp /\ y e. ZZ /\ X e. B ) -> ( -u y .x. ( I ` X ) ) = ( I ` ( y .x. ( I ` X ) ) ) ) |
| 63 | 62 | adantr | |- ( ( ( G e. Grp /\ y e. ZZ /\ X e. B ) /\ ( y .x. ( I ` X ) ) = ( I ` ( y .x. X ) ) ) -> ( -u y .x. ( I ` X ) ) = ( I ` ( y .x. ( I ` X ) ) ) ) |
| 64 | 1 2 3 | mulgneg | |- ( ( G e. Grp /\ y e. ZZ /\ X e. B ) -> ( -u y .x. X ) = ( I ` ( y .x. X ) ) ) |
| 65 | 64 | adantr | |- ( ( ( G e. Grp /\ y e. ZZ /\ X e. B ) /\ ( y .x. ( I ` X ) ) = ( I ` ( y .x. X ) ) ) -> ( -u y .x. X ) = ( I ` ( y .x. X ) ) ) |
| 66 | simpr | |- ( ( ( G e. Grp /\ y e. ZZ /\ X e. B ) /\ ( y .x. ( I ` X ) ) = ( I ` ( y .x. X ) ) ) -> ( y .x. ( I ` X ) ) = ( I ` ( y .x. X ) ) ) |
|
| 67 | 65 66 | eqtr4d | |- ( ( ( G e. Grp /\ y e. ZZ /\ X e. B ) /\ ( y .x. ( I ` X ) ) = ( I ` ( y .x. X ) ) ) -> ( -u y .x. X ) = ( y .x. ( I ` X ) ) ) |
| 68 | 67 | fveq2d | |- ( ( ( G e. Grp /\ y e. ZZ /\ X e. B ) /\ ( y .x. ( I ` X ) ) = ( I ` ( y .x. X ) ) ) -> ( I ` ( -u y .x. X ) ) = ( I ` ( y .x. ( I ` X ) ) ) ) |
| 69 | 63 68 | eqtr4d | |- ( ( ( G e. Grp /\ y e. ZZ /\ X e. B ) /\ ( y .x. ( I ` X ) ) = ( I ` ( y .x. X ) ) ) -> ( -u y .x. ( I ` X ) ) = ( I ` ( -u y .x. X ) ) ) |
| 70 | 69 | 3exp1 | |- ( G e. Grp -> ( y e. ZZ -> ( X e. B -> ( ( y .x. ( I ` X ) ) = ( I ` ( y .x. X ) ) -> ( -u y .x. ( I ` X ) ) = ( I ` ( -u y .x. X ) ) ) ) ) ) |
| 71 | 70 | com23 | |- ( G e. Grp -> ( X e. B -> ( y e. ZZ -> ( ( y .x. ( I ` X ) ) = ( I ` ( y .x. X ) ) -> ( -u y .x. ( I ` X ) ) = ( I ` ( -u y .x. X ) ) ) ) ) ) |
| 72 | 71 | imp | |- ( ( G e. Grp /\ X e. B ) -> ( y e. ZZ -> ( ( y .x. ( I ` X ) ) = ( I ` ( y .x. X ) ) -> ( -u y .x. ( I ` X ) ) = ( I ` ( -u y .x. X ) ) ) ) ) |
| 73 | 59 72 | syl5 | |- ( ( G e. Grp /\ X e. B ) -> ( y e. NN -> ( ( y .x. ( I ` X ) ) = ( I ` ( y .x. X ) ) -> ( -u y .x. ( I ` X ) ) = ( I ` ( -u y .x. X ) ) ) ) ) |
| 74 | 6 9 12 15 18 29 58 73 | zindd | |- ( ( G e. Grp /\ X e. B ) -> ( N e. ZZ -> ( N .x. ( I ` X ) ) = ( I ` ( N .x. X ) ) ) ) |
| 75 | 74 | ex | |- ( G e. Grp -> ( X e. B -> ( N e. ZZ -> ( N .x. ( I ` X ) ) = ( I ` ( N .x. X ) ) ) ) ) |
| 76 | 75 | com23 | |- ( G e. Grp -> ( N e. ZZ -> ( X e. B -> ( N .x. ( I ` X ) ) = ( I ` ( N .x. X ) ) ) ) ) |
| 77 | 76 | 3imp | |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( N .x. ( I ` X ) ) = ( I ` ( N .x. X ) ) ) |