This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of Herstein p. 55. (Contributed by NM, 27-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpinvadd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpinvadd.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| Assertion | grpinvadd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpinvadd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpinvadd.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 4 | simp1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐺 ∈ Grp ) | |
| 5 | simp2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 6 | simp3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 7 | 1 3 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) |
| 8 | 7 | 3adant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) |
| 9 | 1 3 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 10 | 9 | 3adant3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 11 | 1 2 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ∈ 𝐵 ) |
| 12 | 4 8 10 11 | syl3anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ∈ 𝐵 ) |
| 13 | 1 2 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) = ( 𝑋 + ( 𝑌 + ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) ) ) |
| 14 | 4 5 6 12 13 | syl13anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) + ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) = ( 𝑋 + ( 𝑌 + ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) ) ) |
| 15 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 16 | 1 2 15 3 | grprinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 + ( 𝑁 ‘ 𝑌 ) ) = ( 0g ‘ 𝐺 ) ) |
| 17 | 16 | 3adant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 + ( 𝑁 ‘ 𝑌 ) ) = ( 0g ‘ 𝐺 ) ) |
| 18 | 17 | oveq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑌 + ( 𝑁 ‘ 𝑌 ) ) + ( 𝑁 ‘ 𝑋 ) ) = ( ( 0g ‘ 𝐺 ) + ( 𝑁 ‘ 𝑋 ) ) ) |
| 19 | 1 2 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) ) → ( ( 𝑌 + ( 𝑁 ‘ 𝑌 ) ) + ( 𝑁 ‘ 𝑋 ) ) = ( 𝑌 + ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) ) |
| 20 | 4 6 8 10 19 | syl13anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑌 + ( 𝑁 ‘ 𝑌 ) ) + ( 𝑁 ‘ 𝑋 ) ) = ( 𝑌 + ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) ) |
| 21 | 1 2 15 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 22 | 4 10 21 | syl2anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 23 | 18 20 22 | 3eqtr3d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 + ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 24 | 23 | oveq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + ( 𝑌 + ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) ) = ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) ) |
| 25 | 1 2 15 3 | grprinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
| 26 | 25 | 3adant3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
| 27 | 14 24 26 | 3eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) + ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) = ( 0g ‘ 𝐺 ) ) |
| 28 | 1 2 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 29 | 1 2 15 3 | grpinvid1 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 + 𝑌 ) ∈ 𝐵 ∧ ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ∈ 𝐵 ) → ( ( 𝑁 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ↔ ( ( 𝑋 + 𝑌 ) + ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 30 | 4 28 12 29 | syl3anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑁 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ↔ ( ( 𝑋 + 𝑌 ) + ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 31 | 27 30 | mpbird | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) |