This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group multiple operator commutes with the group operation. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by AV, 31-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgaddcom.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgaddcom.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgaddcom.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | mulgaddcom | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑁 · 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgaddcom.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgaddcom.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulgaddcom.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 · 𝑋 ) = ( 0 · 𝑋 ) ) | |
| 5 | 4 | oveq1d | ⊢ ( 𝑥 = 0 → ( ( 𝑥 · 𝑋 ) + 𝑋 ) = ( ( 0 · 𝑋 ) + 𝑋 ) ) |
| 6 | 4 | oveq2d | ⊢ ( 𝑥 = 0 → ( 𝑋 + ( 𝑥 · 𝑋 ) ) = ( 𝑋 + ( 0 · 𝑋 ) ) ) |
| 7 | 5 6 | eqeq12d | ⊢ ( 𝑥 = 0 → ( ( ( 𝑥 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑥 · 𝑋 ) ) ↔ ( ( 0 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 0 · 𝑋 ) ) ) ) |
| 8 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 · 𝑋 ) = ( 𝑦 · 𝑋 ) ) | |
| 9 | 8 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 · 𝑋 ) + 𝑋 ) = ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) |
| 10 | 8 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑋 + ( 𝑥 · 𝑋 ) ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) |
| 11 | 9 10 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑥 · 𝑋 ) ) ↔ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) ) |
| 12 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 · 𝑋 ) = ( ( 𝑦 + 1 ) · 𝑋 ) ) | |
| 13 | 12 | oveq1d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 · 𝑋 ) + 𝑋 ) = ( ( ( 𝑦 + 1 ) · 𝑋 ) + 𝑋 ) ) |
| 14 | 12 | oveq2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑋 + ( 𝑥 · 𝑋 ) ) = ( 𝑋 + ( ( 𝑦 + 1 ) · 𝑋 ) ) ) |
| 15 | 13 14 | eqeq12d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝑥 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑥 · 𝑋 ) ) ↔ ( ( ( 𝑦 + 1 ) · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( ( 𝑦 + 1 ) · 𝑋 ) ) ) ) |
| 16 | oveq1 | ⊢ ( 𝑥 = - 𝑦 → ( 𝑥 · 𝑋 ) = ( - 𝑦 · 𝑋 ) ) | |
| 17 | 16 | oveq1d | ⊢ ( 𝑥 = - 𝑦 → ( ( 𝑥 · 𝑋 ) + 𝑋 ) = ( ( - 𝑦 · 𝑋 ) + 𝑋 ) ) |
| 18 | 16 | oveq2d | ⊢ ( 𝑥 = - 𝑦 → ( 𝑋 + ( 𝑥 · 𝑋 ) ) = ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ) |
| 19 | 17 18 | eqeq12d | ⊢ ( 𝑥 = - 𝑦 → ( ( ( 𝑥 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑥 · 𝑋 ) ) ↔ ( ( - 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ) ) |
| 20 | oveq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 · 𝑋 ) = ( 𝑁 · 𝑋 ) ) | |
| 21 | 20 | oveq1d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 · 𝑋 ) + 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ) |
| 22 | 20 | oveq2d | ⊢ ( 𝑥 = 𝑁 → ( 𝑋 + ( 𝑥 · 𝑋 ) ) = ( 𝑋 + ( 𝑁 · 𝑋 ) ) ) |
| 23 | 21 22 | eqeq12d | ⊢ ( 𝑥 = 𝑁 → ( ( ( 𝑥 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑥 · 𝑋 ) ) ↔ ( ( 𝑁 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑁 · 𝑋 ) ) ) ) |
| 24 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 25 | 1 3 24 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑋 ) = 𝑋 ) |
| 26 | 1 24 2 | mulg0 | ⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 27 | 26 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 28 | 27 | oveq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 · 𝑋 ) + 𝑋 ) = ( ( 0g ‘ 𝐺 ) + 𝑋 ) ) |
| 29 | 27 | oveq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( 0 · 𝑋 ) ) = ( 𝑋 + ( 0g ‘ 𝐺 ) ) ) |
| 30 | 1 3 24 | grprid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( 0g ‘ 𝐺 ) ) = 𝑋 ) |
| 31 | 29 30 | eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( 0 · 𝑋 ) ) = 𝑋 ) |
| 32 | 25 28 31 | 3eqtr4d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 0 · 𝑋 ) ) ) |
| 33 | nn0z | ⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ ) | |
| 34 | simp1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℤ ) → 𝐺 ∈ Grp ) | |
| 35 | simp2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℤ ) → 𝑋 ∈ 𝐵 ) | |
| 36 | 1 2 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 · 𝑋 ) ∈ 𝐵 ) |
| 37 | 36 | 3com23 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℤ ) → ( 𝑦 · 𝑋 ) ∈ 𝐵 ) |
| 38 | 1 3 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑦 · 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑋 + ( 𝑦 · 𝑋 ) ) + 𝑋 ) = ( 𝑋 + ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) ) |
| 39 | 34 35 37 35 38 | syl13anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℤ ) → ( ( 𝑋 + ( 𝑦 · 𝑋 ) ) + 𝑋 ) = ( 𝑋 + ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) ) |
| 40 | 33 39 | syl3an3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑋 + ( 𝑦 · 𝑋 ) ) + 𝑋 ) = ( 𝑋 + ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) ) |
| 41 | 40 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( 𝑋 + ( 𝑦 · 𝑋 ) ) + 𝑋 ) = ( 𝑋 + ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) ) |
| 42 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 43 | 42 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) → 𝐺 ∈ Mnd ) |
| 44 | simp3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) → 𝑦 ∈ ℕ0 ) | |
| 45 | simp2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) | |
| 46 | 1 2 3 | mulgnn0p1 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑦 + 1 ) · 𝑋 ) = ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) |
| 47 | 43 44 45 46 | syl3anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 + 1 ) · 𝑋 ) = ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) |
| 48 | 47 | eqeq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 + 1 ) · 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ↔ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) ) |
| 49 | 48 | biimpar | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( 𝑦 + 1 ) · 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) |
| 50 | 49 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( ( 𝑦 + 1 ) · 𝑋 ) + 𝑋 ) = ( ( 𝑋 + ( 𝑦 · 𝑋 ) ) + 𝑋 ) ) |
| 51 | 47 | oveq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑋 + ( ( 𝑦 + 1 ) · 𝑋 ) ) = ( 𝑋 + ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) ) |
| 52 | 51 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( 𝑋 + ( ( 𝑦 + 1 ) · 𝑋 ) ) = ( 𝑋 + ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) ) |
| 53 | 41 50 52 | 3eqtr4d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( ( 𝑦 + 1 ) · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( ( 𝑦 + 1 ) · 𝑋 ) ) ) |
| 54 | 53 | ex | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) → ( ( ( 𝑦 + 1 ) · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( ( 𝑦 + 1 ) · 𝑋 ) ) ) ) |
| 55 | 54 | 3expia | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 ∈ ℕ0 → ( ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) → ( ( ( 𝑦 + 1 ) · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( ( 𝑦 + 1 ) · 𝑋 ) ) ) ) ) |
| 56 | nnz | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) | |
| 57 | 1 2 3 | mulgaddcomlem | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( - 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ) |
| 58 | 57 | 3exp1 | ⊢ ( 𝐺 ∈ Grp → ( 𝑦 ∈ ℤ → ( 𝑋 ∈ 𝐵 → ( ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) → ( ( - 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ) ) ) ) |
| 59 | 58 | com23 | ⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐵 → ( 𝑦 ∈ ℤ → ( ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) → ( ( - 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ) ) ) ) |
| 60 | 59 | imp | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 ∈ ℤ → ( ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) → ( ( - 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ) ) ) |
| 61 | 56 60 | syl5 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 ∈ ℕ → ( ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) → ( ( - 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ) ) ) |
| 62 | 7 11 15 19 23 32 55 61 | zindd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ∈ ℤ → ( ( 𝑁 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑁 · 𝑋 ) ) ) ) |
| 63 | 62 | ex | ⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐵 → ( 𝑁 ∈ ℤ → ( ( 𝑁 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑁 · 𝑋 ) ) ) ) ) |
| 64 | 63 | com23 | ⊢ ( 𝐺 ∈ Grp → ( 𝑁 ∈ ℤ → ( 𝑋 ∈ 𝐵 → ( ( 𝑁 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑁 · 𝑋 ) ) ) ) ) |
| 65 | 64 | 3imp | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑁 · 𝑋 ) ) ) |