This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009) (Proof shortened by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zindd.1 | ⊢ ( 𝑥 = 0 → ( 𝜑 ↔ 𝜓 ) ) | |
| zindd.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | ||
| zindd.3 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜑 ↔ 𝜏 ) ) | ||
| zindd.4 | ⊢ ( 𝑥 = - 𝑦 → ( 𝜑 ↔ 𝜃 ) ) | ||
| zindd.5 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜂 ) ) | ||
| zindd.6 | ⊢ ( 𝜁 → 𝜓 ) | ||
| zindd.7 | ⊢ ( 𝜁 → ( 𝑦 ∈ ℕ0 → ( 𝜒 → 𝜏 ) ) ) | ||
| zindd.8 | ⊢ ( 𝜁 → ( 𝑦 ∈ ℕ → ( 𝜒 → 𝜃 ) ) ) | ||
| Assertion | zindd | ⊢ ( 𝜁 → ( 𝐴 ∈ ℤ → 𝜂 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zindd.1 | ⊢ ( 𝑥 = 0 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | zindd.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | zindd.3 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜑 ↔ 𝜏 ) ) | |
| 4 | zindd.4 | ⊢ ( 𝑥 = - 𝑦 → ( 𝜑 ↔ 𝜃 ) ) | |
| 5 | zindd.5 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜂 ) ) | |
| 6 | zindd.6 | ⊢ ( 𝜁 → 𝜓 ) | |
| 7 | zindd.7 | ⊢ ( 𝜁 → ( 𝑦 ∈ ℕ0 → ( 𝜒 → 𝜏 ) ) ) | |
| 8 | zindd.8 | ⊢ ( 𝜁 → ( 𝑦 ∈ ℕ → ( 𝜒 → 𝜃 ) ) ) | |
| 9 | znegcl | ⊢ ( 𝑦 ∈ ℤ → - 𝑦 ∈ ℤ ) | |
| 10 | elznn0nn | ⊢ ( - 𝑦 ∈ ℤ ↔ ( - 𝑦 ∈ ℕ0 ∨ ( - 𝑦 ∈ ℝ ∧ - - 𝑦 ∈ ℕ ) ) ) | |
| 11 | 9 10 | sylib | ⊢ ( 𝑦 ∈ ℤ → ( - 𝑦 ∈ ℕ0 ∨ ( - 𝑦 ∈ ℝ ∧ - - 𝑦 ∈ ℕ ) ) ) |
| 12 | simpr | ⊢ ( ( - 𝑦 ∈ ℝ ∧ - - 𝑦 ∈ ℕ ) → - - 𝑦 ∈ ℕ ) | |
| 13 | 12 | orim2i | ⊢ ( ( - 𝑦 ∈ ℕ0 ∨ ( - 𝑦 ∈ ℝ ∧ - - 𝑦 ∈ ℕ ) ) → ( - 𝑦 ∈ ℕ0 ∨ - - 𝑦 ∈ ℕ ) ) |
| 14 | 11 13 | syl | ⊢ ( 𝑦 ∈ ℤ → ( - 𝑦 ∈ ℕ0 ∨ - - 𝑦 ∈ ℕ ) ) |
| 15 | zcn | ⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ ) | |
| 16 | 15 | negnegd | ⊢ ( 𝑦 ∈ ℤ → - - 𝑦 = 𝑦 ) |
| 17 | 16 | eleq1d | ⊢ ( 𝑦 ∈ ℤ → ( - - 𝑦 ∈ ℕ ↔ 𝑦 ∈ ℕ ) ) |
| 18 | 17 | orbi2d | ⊢ ( 𝑦 ∈ ℤ → ( ( - 𝑦 ∈ ℕ0 ∨ - - 𝑦 ∈ ℕ ) ↔ ( - 𝑦 ∈ ℕ0 ∨ 𝑦 ∈ ℕ ) ) ) |
| 19 | 14 18 | mpbid | ⊢ ( 𝑦 ∈ ℤ → ( - 𝑦 ∈ ℕ0 ∨ 𝑦 ∈ ℕ ) ) |
| 20 | 1 | imbi2d | ⊢ ( 𝑥 = 0 → ( ( 𝜁 → 𝜑 ) ↔ ( 𝜁 → 𝜓 ) ) ) |
| 21 | 2 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜁 → 𝜑 ) ↔ ( 𝜁 → 𝜒 ) ) ) |
| 22 | 3 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝜁 → 𝜑 ) ↔ ( 𝜁 → 𝜏 ) ) ) |
| 23 | 4 | imbi2d | ⊢ ( 𝑥 = - 𝑦 → ( ( 𝜁 → 𝜑 ) ↔ ( 𝜁 → 𝜃 ) ) ) |
| 24 | 7 | com12 | ⊢ ( 𝑦 ∈ ℕ0 → ( 𝜁 → ( 𝜒 → 𝜏 ) ) ) |
| 25 | 24 | a2d | ⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝜁 → 𝜒 ) → ( 𝜁 → 𝜏 ) ) ) |
| 26 | 20 21 22 23 6 25 | nn0ind | ⊢ ( - 𝑦 ∈ ℕ0 → ( 𝜁 → 𝜃 ) ) |
| 27 | 26 | com12 | ⊢ ( 𝜁 → ( - 𝑦 ∈ ℕ0 → 𝜃 ) ) |
| 28 | 20 21 22 21 6 25 | nn0ind | ⊢ ( 𝑦 ∈ ℕ0 → ( 𝜁 → 𝜒 ) ) |
| 29 | nnnn0 | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℕ0 ) | |
| 30 | 28 29 | syl11 | ⊢ ( 𝜁 → ( 𝑦 ∈ ℕ → 𝜒 ) ) |
| 31 | 30 8 | mpdd | ⊢ ( 𝜁 → ( 𝑦 ∈ ℕ → 𝜃 ) ) |
| 32 | 27 31 | jaod | ⊢ ( 𝜁 → ( ( - 𝑦 ∈ ℕ0 ∨ 𝑦 ∈ ℕ ) → 𝜃 ) ) |
| 33 | 19 32 | syl5 | ⊢ ( 𝜁 → ( 𝑦 ∈ ℤ → 𝜃 ) ) |
| 34 | 33 | ralrimiv | ⊢ ( 𝜁 → ∀ 𝑦 ∈ ℤ 𝜃 ) |
| 35 | znegcl | ⊢ ( 𝑥 ∈ ℤ → - 𝑥 ∈ ℤ ) | |
| 36 | negeq | ⊢ ( 𝑦 = - 𝑥 → - 𝑦 = - - 𝑥 ) | |
| 37 | zcn | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) | |
| 38 | 37 | negnegd | ⊢ ( 𝑥 ∈ ℤ → - - 𝑥 = 𝑥 ) |
| 39 | 36 38 | sylan9eqr | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 = - 𝑥 ) → - 𝑦 = 𝑥 ) |
| 40 | 39 | eqcomd | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 = - 𝑥 ) → 𝑥 = - 𝑦 ) |
| 41 | 40 4 | syl | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 = - 𝑥 ) → ( 𝜑 ↔ 𝜃 ) ) |
| 42 | 41 | bicomd | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 = - 𝑥 ) → ( 𝜃 ↔ 𝜑 ) ) |
| 43 | 35 42 | rspcdv | ⊢ ( 𝑥 ∈ ℤ → ( ∀ 𝑦 ∈ ℤ 𝜃 → 𝜑 ) ) |
| 44 | 43 | com12 | ⊢ ( ∀ 𝑦 ∈ ℤ 𝜃 → ( 𝑥 ∈ ℤ → 𝜑 ) ) |
| 45 | 44 | ralrimiv | ⊢ ( ∀ 𝑦 ∈ ℤ 𝜃 → ∀ 𝑥 ∈ ℤ 𝜑 ) |
| 46 | 5 | rspccv | ⊢ ( ∀ 𝑥 ∈ ℤ 𝜑 → ( 𝐴 ∈ ℤ → 𝜂 ) ) |
| 47 | 34 45 46 | 3syl | ⊢ ( 𝜁 → ( 𝐴 ∈ ℤ → 𝜂 ) ) |