This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at a successor, extended to NN0 . (Contributed by Mario Carneiro, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnn0p1.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgnn0p1.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgnn0p1.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | mulgnn0p1 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnn0p1.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgnn0p1.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulgnn0p1.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | simpr | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) | |
| 5 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ ) → 𝑋 ∈ 𝐵 ) | |
| 6 | 1 2 3 | mulgnnp1 | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ) |
| 7 | 4 5 6 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ ) → ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ) |
| 8 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 9 | 1 3 8 | mndlid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑋 ) = 𝑋 ) |
| 10 | 1 8 2 | mulg0 | ⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 12 | 11 | oveq1d | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 · 𝑋 ) + 𝑋 ) = ( ( 0g ‘ 𝐺 ) + 𝑋 ) ) |
| 13 | 1 2 | mulg1 | ⊢ ( 𝑋 ∈ 𝐵 → ( 1 · 𝑋 ) = 𝑋 ) |
| 14 | 13 | adantl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( 1 · 𝑋 ) = 𝑋 ) |
| 15 | 9 12 14 | 3eqtr4rd | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( 1 · 𝑋 ) = ( ( 0 · 𝑋 ) + 𝑋 ) ) |
| 16 | 15 | 3adant2 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 1 · 𝑋 ) = ( ( 0 · 𝑋 ) + 𝑋 ) ) |
| 17 | oveq1 | ⊢ ( 𝑁 = 0 → ( 𝑁 + 1 ) = ( 0 + 1 ) ) | |
| 18 | 1e0p1 | ⊢ 1 = ( 0 + 1 ) | |
| 19 | 17 18 | eqtr4di | ⊢ ( 𝑁 = 0 → ( 𝑁 + 1 ) = 1 ) |
| 20 | 19 | oveq1d | ⊢ ( 𝑁 = 0 → ( ( 𝑁 + 1 ) · 𝑋 ) = ( 1 · 𝑋 ) ) |
| 21 | oveq1 | ⊢ ( 𝑁 = 0 → ( 𝑁 · 𝑋 ) = ( 0 · 𝑋 ) ) | |
| 22 | 21 | oveq1d | ⊢ ( 𝑁 = 0 → ( ( 𝑁 · 𝑋 ) + 𝑋 ) = ( ( 0 · 𝑋 ) + 𝑋 ) ) |
| 23 | 20 22 | eqeq12d | ⊢ ( 𝑁 = 0 → ( ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ↔ ( 1 · 𝑋 ) = ( ( 0 · 𝑋 ) + 𝑋 ) ) ) |
| 24 | 16 23 | syl5ibrcom | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 = 0 → ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ) ) |
| 25 | 24 | imp | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ) |
| 26 | simp2 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → 𝑁 ∈ ℕ0 ) | |
| 27 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 28 | 26 27 | sylib | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 29 | 7 25 28 | mpjaodan | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ) |