This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by AV, 31-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulginvcom.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulginvcom.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulginvcom.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| Assertion | mulginvinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) ) = ( 𝑁 · 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulginvcom.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulginvcom.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulginvcom.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 4 | 1 3 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 5 | 4 | 3adant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 6 | 1 2 3 | mulginvcom | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( 𝑁 · ( 𝐼 ‘ ( 𝐼 ‘ 𝑋 ) ) ) = ( 𝐼 ‘ ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 7 | 5 6 | syld3an3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · ( 𝐼 ‘ ( 𝐼 ‘ 𝑋 ) ) ) = ( 𝐼 ‘ ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 8 | 1 3 | grpinvinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
| 9 | 8 | 3adant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
| 10 | 9 | oveq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · ( 𝐼 ‘ ( 𝐼 ‘ 𝑋 ) ) ) = ( 𝑁 · 𝑋 ) ) |
| 11 | 7 10 | eqtr3d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) ) = ( 𝑁 · 𝑋 ) ) |