This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Algebraicity is a composable property; combining several algebraic closure properties gives another. (Contributed by Stefan O'Rear, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mreacs | ⊢ ( 𝑋 ∈ 𝑉 → ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( ACS ‘ 𝑥 ) = ( ACS ‘ 𝑋 ) ) | |
| 2 | pweq | ⊢ ( 𝑥 = 𝑋 → 𝒫 𝑥 = 𝒫 𝑋 ) | |
| 3 | 2 | fveq2d | ⊢ ( 𝑥 = 𝑋 → ( Moore ‘ 𝒫 𝑥 ) = ( Moore ‘ 𝒫 𝑋 ) ) |
| 4 | 1 3 | eleq12d | ⊢ ( 𝑥 = 𝑋 → ( ( ACS ‘ 𝑥 ) ∈ ( Moore ‘ 𝒫 𝑥 ) ↔ ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ) ) |
| 5 | acsmre | ⊢ ( 𝑎 ∈ ( ACS ‘ 𝑥 ) → 𝑎 ∈ ( Moore ‘ 𝑥 ) ) | |
| 6 | mresspw | ⊢ ( 𝑎 ∈ ( Moore ‘ 𝑥 ) → 𝑎 ⊆ 𝒫 𝑥 ) | |
| 7 | 5 6 | syl | ⊢ ( 𝑎 ∈ ( ACS ‘ 𝑥 ) → 𝑎 ⊆ 𝒫 𝑥 ) |
| 8 | 5 7 | elpwd | ⊢ ( 𝑎 ∈ ( ACS ‘ 𝑥 ) → 𝑎 ∈ 𝒫 𝒫 𝑥 ) |
| 9 | 8 | ssriv | ⊢ ( ACS ‘ 𝑥 ) ⊆ 𝒫 𝒫 𝑥 |
| 10 | 9 | a1i | ⊢ ( ⊤ → ( ACS ‘ 𝑥 ) ⊆ 𝒫 𝒫 𝑥 ) |
| 11 | vex | ⊢ 𝑥 ∈ V | |
| 12 | mremre | ⊢ ( 𝑥 ∈ V → ( Moore ‘ 𝑥 ) ∈ ( Moore ‘ 𝒫 𝑥 ) ) | |
| 13 | 11 12 | mp1i | ⊢ ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) → ( Moore ‘ 𝑥 ) ∈ ( Moore ‘ 𝒫 𝑥 ) ) |
| 14 | 5 | ssriv | ⊢ ( ACS ‘ 𝑥 ) ⊆ ( Moore ‘ 𝑥 ) |
| 15 | sstr | ⊢ ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ ( ACS ‘ 𝑥 ) ⊆ ( Moore ‘ 𝑥 ) ) → 𝑎 ⊆ ( Moore ‘ 𝑥 ) ) | |
| 16 | 14 15 | mpan2 | ⊢ ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) → 𝑎 ⊆ ( Moore ‘ 𝑥 ) ) |
| 17 | mrerintcl | ⊢ ( ( ( Moore ‘ 𝑥 ) ∈ ( Moore ‘ 𝒫 𝑥 ) ∧ 𝑎 ⊆ ( Moore ‘ 𝑥 ) ) → ( 𝒫 𝑥 ∩ ∩ 𝑎 ) ∈ ( Moore ‘ 𝑥 ) ) | |
| 18 | 13 16 17 | syl2anc | ⊢ ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) → ( 𝒫 𝑥 ∩ ∩ 𝑎 ) ∈ ( Moore ‘ 𝑥 ) ) |
| 19 | ssel2 | ⊢ ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ 𝑑 ∈ 𝑎 ) → 𝑑 ∈ ( ACS ‘ 𝑥 ) ) | |
| 20 | 19 | acsmred | ⊢ ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ 𝑑 ∈ 𝑎 ) → 𝑑 ∈ ( Moore ‘ 𝑥 ) ) |
| 21 | eqid | ⊢ ( mrCls ‘ 𝑑 ) = ( mrCls ‘ 𝑑 ) | |
| 22 | 20 21 | mrcssvd | ⊢ ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ 𝑑 ∈ 𝑎 ) → ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ⊆ 𝑥 ) |
| 23 | 22 | ralrimiva | ⊢ ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) → ∀ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ⊆ 𝑥 ) |
| 24 | 23 | adantr | ⊢ ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ 𝑐 ∈ 𝒫 𝑥 ) → ∀ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ⊆ 𝑥 ) |
| 25 | iunss | ⊢ ( ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ⊆ 𝑥 ↔ ∀ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ⊆ 𝑥 ) | |
| 26 | 24 25 | sylibr | ⊢ ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ 𝑐 ∈ 𝒫 𝑥 ) → ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ⊆ 𝑥 ) |
| 27 | 11 | elpw2 | ⊢ ( ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ∈ 𝒫 𝑥 ↔ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ⊆ 𝑥 ) |
| 28 | 26 27 | sylibr | ⊢ ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ 𝑐 ∈ 𝒫 𝑥 ) → ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ∈ 𝒫 𝑥 ) |
| 29 | 28 | fmpttd | ⊢ ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) → ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) : 𝒫 𝑥 ⟶ 𝒫 𝑥 ) |
| 30 | fssxp | ⊢ ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) : 𝒫 𝑥 ⟶ 𝒫 𝑥 → ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) ⊆ ( 𝒫 𝑥 × 𝒫 𝑥 ) ) | |
| 31 | 29 30 | syl | ⊢ ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) → ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) ⊆ ( 𝒫 𝑥 × 𝒫 𝑥 ) ) |
| 32 | vpwex | ⊢ 𝒫 𝑥 ∈ V | |
| 33 | 32 32 | xpex | ⊢ ( 𝒫 𝑥 × 𝒫 𝑥 ) ∈ V |
| 34 | ssexg | ⊢ ( ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) ⊆ ( 𝒫 𝑥 × 𝒫 𝑥 ) ∧ ( 𝒫 𝑥 × 𝒫 𝑥 ) ∈ V ) → ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) ∈ V ) | |
| 35 | 31 33 34 | sylancl | ⊢ ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) → ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) ∈ V ) |
| 36 | 19 | adantlr | ⊢ ( ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ 𝑏 ∈ 𝒫 𝑥 ) ∧ 𝑑 ∈ 𝑎 ) → 𝑑 ∈ ( ACS ‘ 𝑥 ) ) |
| 37 | elpwi | ⊢ ( 𝑏 ∈ 𝒫 𝑥 → 𝑏 ⊆ 𝑥 ) | |
| 38 | 37 | ad2antlr | ⊢ ( ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ 𝑏 ∈ 𝒫 𝑥 ) ∧ 𝑑 ∈ 𝑎 ) → 𝑏 ⊆ 𝑥 ) |
| 39 | 21 | acsfiel2 | ⊢ ( ( 𝑑 ∈ ( ACS ‘ 𝑥 ) ∧ 𝑏 ⊆ 𝑥 ) → ( 𝑏 ∈ 𝑑 ↔ ∀ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ⊆ 𝑏 ) ) |
| 40 | 36 38 39 | syl2anc | ⊢ ( ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ 𝑏 ∈ 𝒫 𝑥 ) ∧ 𝑑 ∈ 𝑎 ) → ( 𝑏 ∈ 𝑑 ↔ ∀ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ⊆ 𝑏 ) ) |
| 41 | 40 | ralbidva | ⊢ ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ 𝑏 ∈ 𝒫 𝑥 ) → ( ∀ 𝑑 ∈ 𝑎 𝑏 ∈ 𝑑 ↔ ∀ 𝑑 ∈ 𝑎 ∀ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ⊆ 𝑏 ) ) |
| 42 | iunss | ⊢ ( ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ⊆ 𝑏 ↔ ∀ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ⊆ 𝑏 ) | |
| 43 | 42 | ralbii | ⊢ ( ∀ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ⊆ 𝑏 ↔ ∀ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ∀ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ⊆ 𝑏 ) |
| 44 | ralcom | ⊢ ( ∀ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ∀ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ⊆ 𝑏 ↔ ∀ 𝑑 ∈ 𝑎 ∀ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ⊆ 𝑏 ) | |
| 45 | 43 44 | bitri | ⊢ ( ∀ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ⊆ 𝑏 ↔ ∀ 𝑑 ∈ 𝑎 ∀ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ⊆ 𝑏 ) |
| 46 | 41 45 | bitr4di | ⊢ ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ 𝑏 ∈ 𝒫 𝑥 ) → ( ∀ 𝑑 ∈ 𝑎 𝑏 ∈ 𝑑 ↔ ∀ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ⊆ 𝑏 ) ) |
| 47 | elrint2 | ⊢ ( 𝑏 ∈ 𝒫 𝑥 → ( 𝑏 ∈ ( 𝒫 𝑥 ∩ ∩ 𝑎 ) ↔ ∀ 𝑑 ∈ 𝑎 𝑏 ∈ 𝑑 ) ) | |
| 48 | 47 | adantl | ⊢ ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ 𝑏 ∈ 𝒫 𝑥 ) → ( 𝑏 ∈ ( 𝒫 𝑥 ∩ ∩ 𝑎 ) ↔ ∀ 𝑑 ∈ 𝑎 𝑏 ∈ 𝑑 ) ) |
| 49 | funmpt | ⊢ Fun ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) | |
| 50 | funiunfv | ⊢ ( Fun ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) → ∪ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) ‘ 𝑒 ) = ∪ ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) “ ( 𝒫 𝑏 ∩ Fin ) ) ) | |
| 51 | 49 50 | ax-mp | ⊢ ∪ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) ‘ 𝑒 ) = ∪ ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) “ ( 𝒫 𝑏 ∩ Fin ) ) |
| 52 | 51 | sseq1i | ⊢ ( ∪ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) ‘ 𝑒 ) ⊆ 𝑏 ↔ ∪ ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) “ ( 𝒫 𝑏 ∩ Fin ) ) ⊆ 𝑏 ) |
| 53 | iunss | ⊢ ( ∪ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) ‘ 𝑒 ) ⊆ 𝑏 ↔ ∀ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) ‘ 𝑒 ) ⊆ 𝑏 ) | |
| 54 | eqid | ⊢ ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) = ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) | |
| 55 | fveq2 | ⊢ ( 𝑐 = 𝑒 → ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) = ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ) | |
| 56 | 55 | iuneq2d | ⊢ ( 𝑐 = 𝑒 → ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) = ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ) |
| 57 | inss1 | ⊢ ( 𝒫 𝑏 ∩ Fin ) ⊆ 𝒫 𝑏 | |
| 58 | 37 | sspwd | ⊢ ( 𝑏 ∈ 𝒫 𝑥 → 𝒫 𝑏 ⊆ 𝒫 𝑥 ) |
| 59 | 58 | adantl | ⊢ ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ 𝑏 ∈ 𝒫 𝑥 ) → 𝒫 𝑏 ⊆ 𝒫 𝑥 ) |
| 60 | 57 59 | sstrid | ⊢ ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ 𝑏 ∈ 𝒫 𝑥 ) → ( 𝒫 𝑏 ∩ Fin ) ⊆ 𝒫 𝑥 ) |
| 61 | 60 | sselda | ⊢ ( ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ 𝑏 ∈ 𝒫 𝑥 ) ∧ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ) → 𝑒 ∈ 𝒫 𝑥 ) |
| 62 | 20 21 | mrcssvd | ⊢ ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ 𝑑 ∈ 𝑎 ) → ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ⊆ 𝑥 ) |
| 63 | 62 | ralrimiva | ⊢ ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) → ∀ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ⊆ 𝑥 ) |
| 64 | 63 | ad2antrr | ⊢ ( ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ 𝑏 ∈ 𝒫 𝑥 ) ∧ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ) → ∀ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ⊆ 𝑥 ) |
| 65 | iunss | ⊢ ( ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ⊆ 𝑥 ↔ ∀ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ⊆ 𝑥 ) | |
| 66 | 64 65 | sylibr | ⊢ ( ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ 𝑏 ∈ 𝒫 𝑥 ) ∧ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ) → ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ⊆ 𝑥 ) |
| 67 | ssexg | ⊢ ( ( ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ⊆ 𝑥 ∧ 𝑥 ∈ V ) → ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ∈ V ) | |
| 68 | 66 11 67 | sylancl | ⊢ ( ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ 𝑏 ∈ 𝒫 𝑥 ) ∧ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ) → ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ∈ V ) |
| 69 | 54 56 61 68 | fvmptd3 | ⊢ ( ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ 𝑏 ∈ 𝒫 𝑥 ) ∧ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ) → ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) ‘ 𝑒 ) = ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ) |
| 70 | 69 | sseq1d | ⊢ ( ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ 𝑏 ∈ 𝒫 𝑥 ) ∧ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ) → ( ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) ‘ 𝑒 ) ⊆ 𝑏 ↔ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ⊆ 𝑏 ) ) |
| 71 | 70 | ralbidva | ⊢ ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ 𝑏 ∈ 𝒫 𝑥 ) → ( ∀ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) ‘ 𝑒 ) ⊆ 𝑏 ↔ ∀ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ⊆ 𝑏 ) ) |
| 72 | 53 71 | bitrid | ⊢ ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ 𝑏 ∈ 𝒫 𝑥 ) → ( ∪ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) ‘ 𝑒 ) ⊆ 𝑏 ↔ ∀ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ⊆ 𝑏 ) ) |
| 73 | 52 72 | bitr3id | ⊢ ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ 𝑏 ∈ 𝒫 𝑥 ) → ( ∪ ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) “ ( 𝒫 𝑏 ∩ Fin ) ) ⊆ 𝑏 ↔ ∀ 𝑒 ∈ ( 𝒫 𝑏 ∩ Fin ) ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑒 ) ⊆ 𝑏 ) ) |
| 74 | 46 48 73 | 3bitr4d | ⊢ ( ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) ∧ 𝑏 ∈ 𝒫 𝑥 ) → ( 𝑏 ∈ ( 𝒫 𝑥 ∩ ∩ 𝑎 ) ↔ ∪ ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) “ ( 𝒫 𝑏 ∩ Fin ) ) ⊆ 𝑏 ) ) |
| 75 | 74 | ralrimiva | ⊢ ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) → ∀ 𝑏 ∈ 𝒫 𝑥 ( 𝑏 ∈ ( 𝒫 𝑥 ∩ ∩ 𝑎 ) ↔ ∪ ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) “ ( 𝒫 𝑏 ∩ Fin ) ) ⊆ 𝑏 ) ) |
| 76 | 29 75 | jca | ⊢ ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) → ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) : 𝒫 𝑥 ⟶ 𝒫 𝑥 ∧ ∀ 𝑏 ∈ 𝒫 𝑥 ( 𝑏 ∈ ( 𝒫 𝑥 ∩ ∩ 𝑎 ) ↔ ∪ ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) “ ( 𝒫 𝑏 ∩ Fin ) ) ⊆ 𝑏 ) ) ) |
| 77 | feq1 | ⊢ ( 𝑓 = ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) → ( 𝑓 : 𝒫 𝑥 ⟶ 𝒫 𝑥 ↔ ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) : 𝒫 𝑥 ⟶ 𝒫 𝑥 ) ) | |
| 78 | imaeq1 | ⊢ ( 𝑓 = ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) → ( 𝑓 “ ( 𝒫 𝑏 ∩ Fin ) ) = ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) “ ( 𝒫 𝑏 ∩ Fin ) ) ) | |
| 79 | 78 | unieqd | ⊢ ( 𝑓 = ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) → ∪ ( 𝑓 “ ( 𝒫 𝑏 ∩ Fin ) ) = ∪ ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) “ ( 𝒫 𝑏 ∩ Fin ) ) ) |
| 80 | 79 | sseq1d | ⊢ ( 𝑓 = ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) → ( ∪ ( 𝑓 “ ( 𝒫 𝑏 ∩ Fin ) ) ⊆ 𝑏 ↔ ∪ ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) “ ( 𝒫 𝑏 ∩ Fin ) ) ⊆ 𝑏 ) ) |
| 81 | 80 | bibi2d | ⊢ ( 𝑓 = ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) → ( ( 𝑏 ∈ ( 𝒫 𝑥 ∩ ∩ 𝑎 ) ↔ ∪ ( 𝑓 “ ( 𝒫 𝑏 ∩ Fin ) ) ⊆ 𝑏 ) ↔ ( 𝑏 ∈ ( 𝒫 𝑥 ∩ ∩ 𝑎 ) ↔ ∪ ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) “ ( 𝒫 𝑏 ∩ Fin ) ) ⊆ 𝑏 ) ) ) |
| 82 | 81 | ralbidv | ⊢ ( 𝑓 = ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) → ( ∀ 𝑏 ∈ 𝒫 𝑥 ( 𝑏 ∈ ( 𝒫 𝑥 ∩ ∩ 𝑎 ) ↔ ∪ ( 𝑓 “ ( 𝒫 𝑏 ∩ Fin ) ) ⊆ 𝑏 ) ↔ ∀ 𝑏 ∈ 𝒫 𝑥 ( 𝑏 ∈ ( 𝒫 𝑥 ∩ ∩ 𝑎 ) ↔ ∪ ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) “ ( 𝒫 𝑏 ∩ Fin ) ) ⊆ 𝑏 ) ) ) |
| 83 | 77 82 | anbi12d | ⊢ ( 𝑓 = ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) → ( ( 𝑓 : 𝒫 𝑥 ⟶ 𝒫 𝑥 ∧ ∀ 𝑏 ∈ 𝒫 𝑥 ( 𝑏 ∈ ( 𝒫 𝑥 ∩ ∩ 𝑎 ) ↔ ∪ ( 𝑓 “ ( 𝒫 𝑏 ∩ Fin ) ) ⊆ 𝑏 ) ) ↔ ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) : 𝒫 𝑥 ⟶ 𝒫 𝑥 ∧ ∀ 𝑏 ∈ 𝒫 𝑥 ( 𝑏 ∈ ( 𝒫 𝑥 ∩ ∩ 𝑎 ) ↔ ∪ ( ( 𝑐 ∈ 𝒫 𝑥 ↦ ∪ 𝑑 ∈ 𝑎 ( ( mrCls ‘ 𝑑 ) ‘ 𝑐 ) ) “ ( 𝒫 𝑏 ∩ Fin ) ) ⊆ 𝑏 ) ) ) ) |
| 84 | 35 76 83 | spcedv | ⊢ ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) → ∃ 𝑓 ( 𝑓 : 𝒫 𝑥 ⟶ 𝒫 𝑥 ∧ ∀ 𝑏 ∈ 𝒫 𝑥 ( 𝑏 ∈ ( 𝒫 𝑥 ∩ ∩ 𝑎 ) ↔ ∪ ( 𝑓 “ ( 𝒫 𝑏 ∩ Fin ) ) ⊆ 𝑏 ) ) ) |
| 85 | isacs | ⊢ ( ( 𝒫 𝑥 ∩ ∩ 𝑎 ) ∈ ( ACS ‘ 𝑥 ) ↔ ( ( 𝒫 𝑥 ∩ ∩ 𝑎 ) ∈ ( Moore ‘ 𝑥 ) ∧ ∃ 𝑓 ( 𝑓 : 𝒫 𝑥 ⟶ 𝒫 𝑥 ∧ ∀ 𝑏 ∈ 𝒫 𝑥 ( 𝑏 ∈ ( 𝒫 𝑥 ∩ ∩ 𝑎 ) ↔ ∪ ( 𝑓 “ ( 𝒫 𝑏 ∩ Fin ) ) ⊆ 𝑏 ) ) ) ) | |
| 86 | 18 84 85 | sylanbrc | ⊢ ( 𝑎 ⊆ ( ACS ‘ 𝑥 ) → ( 𝒫 𝑥 ∩ ∩ 𝑎 ) ∈ ( ACS ‘ 𝑥 ) ) |
| 87 | 86 | adantl | ⊢ ( ( ⊤ ∧ 𝑎 ⊆ ( ACS ‘ 𝑥 ) ) → ( 𝒫 𝑥 ∩ ∩ 𝑎 ) ∈ ( ACS ‘ 𝑥 ) ) |
| 88 | 10 87 | ismred2 | ⊢ ( ⊤ → ( ACS ‘ 𝑥 ) ∈ ( Moore ‘ 𝒫 𝑥 ) ) |
| 89 | 88 | mptru | ⊢ ( ACS ‘ 𝑥 ) ∈ ( Moore ‘ 𝒫 𝑥 ) |
| 90 | 4 89 | vtoclg | ⊢ ( 𝑋 ∈ 𝑉 → ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ) |