This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Algebraicity is a composable property; combining several algebraic closure properties gives another. (Contributed by Stefan O'Rear, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mreacs | |- ( X e. V -> ( ACS ` X ) e. ( Moore ` ~P X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( x = X -> ( ACS ` x ) = ( ACS ` X ) ) |
|
| 2 | pweq | |- ( x = X -> ~P x = ~P X ) |
|
| 3 | 2 | fveq2d | |- ( x = X -> ( Moore ` ~P x ) = ( Moore ` ~P X ) ) |
| 4 | 1 3 | eleq12d | |- ( x = X -> ( ( ACS ` x ) e. ( Moore ` ~P x ) <-> ( ACS ` X ) e. ( Moore ` ~P X ) ) ) |
| 5 | acsmre | |- ( a e. ( ACS ` x ) -> a e. ( Moore ` x ) ) |
|
| 6 | mresspw | |- ( a e. ( Moore ` x ) -> a C_ ~P x ) |
|
| 7 | 5 6 | syl | |- ( a e. ( ACS ` x ) -> a C_ ~P x ) |
| 8 | 5 7 | elpwd | |- ( a e. ( ACS ` x ) -> a e. ~P ~P x ) |
| 9 | 8 | ssriv | |- ( ACS ` x ) C_ ~P ~P x |
| 10 | 9 | a1i | |- ( T. -> ( ACS ` x ) C_ ~P ~P x ) |
| 11 | vex | |- x e. _V |
|
| 12 | mremre | |- ( x e. _V -> ( Moore ` x ) e. ( Moore ` ~P x ) ) |
|
| 13 | 11 12 | mp1i | |- ( a C_ ( ACS ` x ) -> ( Moore ` x ) e. ( Moore ` ~P x ) ) |
| 14 | 5 | ssriv | |- ( ACS ` x ) C_ ( Moore ` x ) |
| 15 | sstr | |- ( ( a C_ ( ACS ` x ) /\ ( ACS ` x ) C_ ( Moore ` x ) ) -> a C_ ( Moore ` x ) ) |
|
| 16 | 14 15 | mpan2 | |- ( a C_ ( ACS ` x ) -> a C_ ( Moore ` x ) ) |
| 17 | mrerintcl | |- ( ( ( Moore ` x ) e. ( Moore ` ~P x ) /\ a C_ ( Moore ` x ) ) -> ( ~P x i^i |^| a ) e. ( Moore ` x ) ) |
|
| 18 | 13 16 17 | syl2anc | |- ( a C_ ( ACS ` x ) -> ( ~P x i^i |^| a ) e. ( Moore ` x ) ) |
| 19 | ssel2 | |- ( ( a C_ ( ACS ` x ) /\ d e. a ) -> d e. ( ACS ` x ) ) |
|
| 20 | 19 | acsmred | |- ( ( a C_ ( ACS ` x ) /\ d e. a ) -> d e. ( Moore ` x ) ) |
| 21 | eqid | |- ( mrCls ` d ) = ( mrCls ` d ) |
|
| 22 | 20 21 | mrcssvd | |- ( ( a C_ ( ACS ` x ) /\ d e. a ) -> ( ( mrCls ` d ) ` c ) C_ x ) |
| 23 | 22 | ralrimiva | |- ( a C_ ( ACS ` x ) -> A. d e. a ( ( mrCls ` d ) ` c ) C_ x ) |
| 24 | 23 | adantr | |- ( ( a C_ ( ACS ` x ) /\ c e. ~P x ) -> A. d e. a ( ( mrCls ` d ) ` c ) C_ x ) |
| 25 | iunss | |- ( U_ d e. a ( ( mrCls ` d ) ` c ) C_ x <-> A. d e. a ( ( mrCls ` d ) ` c ) C_ x ) |
|
| 26 | 24 25 | sylibr | |- ( ( a C_ ( ACS ` x ) /\ c e. ~P x ) -> U_ d e. a ( ( mrCls ` d ) ` c ) C_ x ) |
| 27 | 11 | elpw2 | |- ( U_ d e. a ( ( mrCls ` d ) ` c ) e. ~P x <-> U_ d e. a ( ( mrCls ` d ) ` c ) C_ x ) |
| 28 | 26 27 | sylibr | |- ( ( a C_ ( ACS ` x ) /\ c e. ~P x ) -> U_ d e. a ( ( mrCls ` d ) ` c ) e. ~P x ) |
| 29 | 28 | fmpttd | |- ( a C_ ( ACS ` x ) -> ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) : ~P x --> ~P x ) |
| 30 | fssxp | |- ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) : ~P x --> ~P x -> ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) C_ ( ~P x X. ~P x ) ) |
|
| 31 | 29 30 | syl | |- ( a C_ ( ACS ` x ) -> ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) C_ ( ~P x X. ~P x ) ) |
| 32 | vpwex | |- ~P x e. _V |
|
| 33 | 32 32 | xpex | |- ( ~P x X. ~P x ) e. _V |
| 34 | ssexg | |- ( ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) C_ ( ~P x X. ~P x ) /\ ( ~P x X. ~P x ) e. _V ) -> ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) e. _V ) |
|
| 35 | 31 33 34 | sylancl | |- ( a C_ ( ACS ` x ) -> ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) e. _V ) |
| 36 | 19 | adantlr | |- ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ d e. a ) -> d e. ( ACS ` x ) ) |
| 37 | elpwi | |- ( b e. ~P x -> b C_ x ) |
|
| 38 | 37 | ad2antlr | |- ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ d e. a ) -> b C_ x ) |
| 39 | 21 | acsfiel2 | |- ( ( d e. ( ACS ` x ) /\ b C_ x ) -> ( b e. d <-> A. e e. ( ~P b i^i Fin ) ( ( mrCls ` d ) ` e ) C_ b ) ) |
| 40 | 36 38 39 | syl2anc | |- ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ d e. a ) -> ( b e. d <-> A. e e. ( ~P b i^i Fin ) ( ( mrCls ` d ) ` e ) C_ b ) ) |
| 41 | 40 | ralbidva | |- ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ( A. d e. a b e. d <-> A. d e. a A. e e. ( ~P b i^i Fin ) ( ( mrCls ` d ) ` e ) C_ b ) ) |
| 42 | iunss | |- ( U_ d e. a ( ( mrCls ` d ) ` e ) C_ b <-> A. d e. a ( ( mrCls ` d ) ` e ) C_ b ) |
|
| 43 | 42 | ralbii | |- ( A. e e. ( ~P b i^i Fin ) U_ d e. a ( ( mrCls ` d ) ` e ) C_ b <-> A. e e. ( ~P b i^i Fin ) A. d e. a ( ( mrCls ` d ) ` e ) C_ b ) |
| 44 | ralcom | |- ( A. e e. ( ~P b i^i Fin ) A. d e. a ( ( mrCls ` d ) ` e ) C_ b <-> A. d e. a A. e e. ( ~P b i^i Fin ) ( ( mrCls ` d ) ` e ) C_ b ) |
|
| 45 | 43 44 | bitri | |- ( A. e e. ( ~P b i^i Fin ) U_ d e. a ( ( mrCls ` d ) ` e ) C_ b <-> A. d e. a A. e e. ( ~P b i^i Fin ) ( ( mrCls ` d ) ` e ) C_ b ) |
| 46 | 41 45 | bitr4di | |- ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ( A. d e. a b e. d <-> A. e e. ( ~P b i^i Fin ) U_ d e. a ( ( mrCls ` d ) ` e ) C_ b ) ) |
| 47 | elrint2 | |- ( b e. ~P x -> ( b e. ( ~P x i^i |^| a ) <-> A. d e. a b e. d ) ) |
|
| 48 | 47 | adantl | |- ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ( b e. ( ~P x i^i |^| a ) <-> A. d e. a b e. d ) ) |
| 49 | funmpt | |- Fun ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) |
|
| 50 | funiunfv | |- ( Fun ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) -> U_ e e. ( ~P b i^i Fin ) ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) = U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) ) |
|
| 51 | 49 50 | ax-mp | |- U_ e e. ( ~P b i^i Fin ) ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) = U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) |
| 52 | 51 | sseq1i | |- ( U_ e e. ( ~P b i^i Fin ) ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) C_ b <-> U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b ) |
| 53 | iunss | |- ( U_ e e. ( ~P b i^i Fin ) ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) C_ b <-> A. e e. ( ~P b i^i Fin ) ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) C_ b ) |
|
| 54 | eqid | |- ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) = ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) |
|
| 55 | fveq2 | |- ( c = e -> ( ( mrCls ` d ) ` c ) = ( ( mrCls ` d ) ` e ) ) |
|
| 56 | 55 | iuneq2d | |- ( c = e -> U_ d e. a ( ( mrCls ` d ) ` c ) = U_ d e. a ( ( mrCls ` d ) ` e ) ) |
| 57 | inss1 | |- ( ~P b i^i Fin ) C_ ~P b |
|
| 58 | 37 | sspwd | |- ( b e. ~P x -> ~P b C_ ~P x ) |
| 59 | 58 | adantl | |- ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ~P b C_ ~P x ) |
| 60 | 57 59 | sstrid | |- ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ( ~P b i^i Fin ) C_ ~P x ) |
| 61 | 60 | sselda | |- ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ e e. ( ~P b i^i Fin ) ) -> e e. ~P x ) |
| 62 | 20 21 | mrcssvd | |- ( ( a C_ ( ACS ` x ) /\ d e. a ) -> ( ( mrCls ` d ) ` e ) C_ x ) |
| 63 | 62 | ralrimiva | |- ( a C_ ( ACS ` x ) -> A. d e. a ( ( mrCls ` d ) ` e ) C_ x ) |
| 64 | 63 | ad2antrr | |- ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ e e. ( ~P b i^i Fin ) ) -> A. d e. a ( ( mrCls ` d ) ` e ) C_ x ) |
| 65 | iunss | |- ( U_ d e. a ( ( mrCls ` d ) ` e ) C_ x <-> A. d e. a ( ( mrCls ` d ) ` e ) C_ x ) |
|
| 66 | 64 65 | sylibr | |- ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ e e. ( ~P b i^i Fin ) ) -> U_ d e. a ( ( mrCls ` d ) ` e ) C_ x ) |
| 67 | ssexg | |- ( ( U_ d e. a ( ( mrCls ` d ) ` e ) C_ x /\ x e. _V ) -> U_ d e. a ( ( mrCls ` d ) ` e ) e. _V ) |
|
| 68 | 66 11 67 | sylancl | |- ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ e e. ( ~P b i^i Fin ) ) -> U_ d e. a ( ( mrCls ` d ) ` e ) e. _V ) |
| 69 | 54 56 61 68 | fvmptd3 | |- ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ e e. ( ~P b i^i Fin ) ) -> ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) = U_ d e. a ( ( mrCls ` d ) ` e ) ) |
| 70 | 69 | sseq1d | |- ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ e e. ( ~P b i^i Fin ) ) -> ( ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) C_ b <-> U_ d e. a ( ( mrCls ` d ) ` e ) C_ b ) ) |
| 71 | 70 | ralbidva | |- ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ( A. e e. ( ~P b i^i Fin ) ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) C_ b <-> A. e e. ( ~P b i^i Fin ) U_ d e. a ( ( mrCls ` d ) ` e ) C_ b ) ) |
| 72 | 53 71 | bitrid | |- ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ( U_ e e. ( ~P b i^i Fin ) ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) C_ b <-> A. e e. ( ~P b i^i Fin ) U_ d e. a ( ( mrCls ` d ) ` e ) C_ b ) ) |
| 73 | 52 72 | bitr3id | |- ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ( U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b <-> A. e e. ( ~P b i^i Fin ) U_ d e. a ( ( mrCls ` d ) ` e ) C_ b ) ) |
| 74 | 46 48 73 | 3bitr4d | |- ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ( b e. ( ~P x i^i |^| a ) <-> U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b ) ) |
| 75 | 74 | ralrimiva | |- ( a C_ ( ACS ` x ) -> A. b e. ~P x ( b e. ( ~P x i^i |^| a ) <-> U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b ) ) |
| 76 | 29 75 | jca | |- ( a C_ ( ACS ` x ) -> ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) : ~P x --> ~P x /\ A. b e. ~P x ( b e. ( ~P x i^i |^| a ) <-> U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b ) ) ) |
| 77 | feq1 | |- ( f = ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) -> ( f : ~P x --> ~P x <-> ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) : ~P x --> ~P x ) ) |
|
| 78 | imaeq1 | |- ( f = ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) -> ( f " ( ~P b i^i Fin ) ) = ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) ) |
|
| 79 | 78 | unieqd | |- ( f = ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) -> U. ( f " ( ~P b i^i Fin ) ) = U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) ) |
| 80 | 79 | sseq1d | |- ( f = ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) -> ( U. ( f " ( ~P b i^i Fin ) ) C_ b <-> U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b ) ) |
| 81 | 80 | bibi2d | |- ( f = ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) -> ( ( b e. ( ~P x i^i |^| a ) <-> U. ( f " ( ~P b i^i Fin ) ) C_ b ) <-> ( b e. ( ~P x i^i |^| a ) <-> U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b ) ) ) |
| 82 | 81 | ralbidv | |- ( f = ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) -> ( A. b e. ~P x ( b e. ( ~P x i^i |^| a ) <-> U. ( f " ( ~P b i^i Fin ) ) C_ b ) <-> A. b e. ~P x ( b e. ( ~P x i^i |^| a ) <-> U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b ) ) ) |
| 83 | 77 82 | anbi12d | |- ( f = ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) -> ( ( f : ~P x --> ~P x /\ A. b e. ~P x ( b e. ( ~P x i^i |^| a ) <-> U. ( f " ( ~P b i^i Fin ) ) C_ b ) ) <-> ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) : ~P x --> ~P x /\ A. b e. ~P x ( b e. ( ~P x i^i |^| a ) <-> U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b ) ) ) ) |
| 84 | 35 76 83 | spcedv | |- ( a C_ ( ACS ` x ) -> E. f ( f : ~P x --> ~P x /\ A. b e. ~P x ( b e. ( ~P x i^i |^| a ) <-> U. ( f " ( ~P b i^i Fin ) ) C_ b ) ) ) |
| 85 | isacs | |- ( ( ~P x i^i |^| a ) e. ( ACS ` x ) <-> ( ( ~P x i^i |^| a ) e. ( Moore ` x ) /\ E. f ( f : ~P x --> ~P x /\ A. b e. ~P x ( b e. ( ~P x i^i |^| a ) <-> U. ( f " ( ~P b i^i Fin ) ) C_ b ) ) ) ) |
|
| 86 | 18 84 85 | sylanbrc | |- ( a C_ ( ACS ` x ) -> ( ~P x i^i |^| a ) e. ( ACS ` x ) ) |
| 87 | 86 | adantl | |- ( ( T. /\ a C_ ( ACS ` x ) ) -> ( ~P x i^i |^| a ) e. ( ACS ` x ) ) |
| 88 | 10 87 | ismred2 | |- ( T. -> ( ACS ` x ) e. ( Moore ` ~P x ) ) |
| 89 | 88 | mptru | |- ( ACS ` x ) e. ( Moore ` ~P x ) |
| 90 | 4 89 | vtoclg | |- ( X e. V -> ( ACS ` X ) e. ( Moore ` ~P X ) ) |