This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Moore collections of subsets of a space, viewed as a kind of subset of the power set, form a Moore collection in their own right on the power set. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mremre | ⊢ ( 𝑋 ∈ 𝑉 → ( Moore ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mresspw | ⊢ ( 𝑎 ∈ ( Moore ‘ 𝑋 ) → 𝑎 ⊆ 𝒫 𝑋 ) | |
| 2 | velpw | ⊢ ( 𝑎 ∈ 𝒫 𝒫 𝑋 ↔ 𝑎 ⊆ 𝒫 𝑋 ) | |
| 3 | 1 2 | sylibr | ⊢ ( 𝑎 ∈ ( Moore ‘ 𝑋 ) → 𝑎 ∈ 𝒫 𝒫 𝑋 ) |
| 4 | 3 | ssriv | ⊢ ( Moore ‘ 𝑋 ) ⊆ 𝒫 𝒫 𝑋 |
| 5 | 4 | a1i | ⊢ ( 𝑋 ∈ 𝑉 → ( Moore ‘ 𝑋 ) ⊆ 𝒫 𝒫 𝑋 ) |
| 6 | ssidd | ⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ⊆ 𝒫 𝑋 ) | |
| 7 | pwidg | ⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ 𝒫 𝑋 ) | |
| 8 | intssuni2 | ⊢ ( ( 𝑎 ⊆ 𝒫 𝑋 ∧ 𝑎 ≠ ∅ ) → ∩ 𝑎 ⊆ ∪ 𝒫 𝑋 ) | |
| 9 | 8 | 3adant1 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ 𝒫 𝑋 ∧ 𝑎 ≠ ∅ ) → ∩ 𝑎 ⊆ ∪ 𝒫 𝑋 ) |
| 10 | unipw | ⊢ ∪ 𝒫 𝑋 = 𝑋 | |
| 11 | 9 10 | sseqtrdi | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ 𝒫 𝑋 ∧ 𝑎 ≠ ∅ ) → ∩ 𝑎 ⊆ 𝑋 ) |
| 12 | elpw2g | ⊢ ( 𝑋 ∈ 𝑉 → ( ∩ 𝑎 ∈ 𝒫 𝑋 ↔ ∩ 𝑎 ⊆ 𝑋 ) ) | |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ 𝒫 𝑋 ∧ 𝑎 ≠ ∅ ) → ( ∩ 𝑎 ∈ 𝒫 𝑋 ↔ ∩ 𝑎 ⊆ 𝑋 ) ) |
| 14 | 11 13 | mpbird | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ 𝒫 𝑋 ∧ 𝑎 ≠ ∅ ) → ∩ 𝑎 ∈ 𝒫 𝑋 ) |
| 15 | 6 7 14 | ismred | ⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ ( Moore ‘ 𝑋 ) ) |
| 16 | n0 | ⊢ ( 𝑎 ≠ ∅ ↔ ∃ 𝑏 𝑏 ∈ 𝑎 ) | |
| 17 | intss1 | ⊢ ( 𝑏 ∈ 𝑎 → ∩ 𝑎 ⊆ 𝑏 ) | |
| 18 | 17 | adantl | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ) ∧ 𝑏 ∈ 𝑎 ) → ∩ 𝑎 ⊆ 𝑏 ) |
| 19 | simpr | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ) → 𝑎 ⊆ ( Moore ‘ 𝑋 ) ) | |
| 20 | 19 | sselda | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ) ∧ 𝑏 ∈ 𝑎 ) → 𝑏 ∈ ( Moore ‘ 𝑋 ) ) |
| 21 | mresspw | ⊢ ( 𝑏 ∈ ( Moore ‘ 𝑋 ) → 𝑏 ⊆ 𝒫 𝑋 ) | |
| 22 | 20 21 | syl | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ) ∧ 𝑏 ∈ 𝑎 ) → 𝑏 ⊆ 𝒫 𝑋 ) |
| 23 | 18 22 | sstrd | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ) ∧ 𝑏 ∈ 𝑎 ) → ∩ 𝑎 ⊆ 𝒫 𝑋 ) |
| 24 | 23 | ex | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ) → ( 𝑏 ∈ 𝑎 → ∩ 𝑎 ⊆ 𝒫 𝑋 ) ) |
| 25 | 24 | exlimdv | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ) → ( ∃ 𝑏 𝑏 ∈ 𝑎 → ∩ 𝑎 ⊆ 𝒫 𝑋 ) ) |
| 26 | 16 25 | biimtrid | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ) → ( 𝑎 ≠ ∅ → ∩ 𝑎 ⊆ 𝒫 𝑋 ) ) |
| 27 | 26 | 3impia | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) → ∩ 𝑎 ⊆ 𝒫 𝑋 ) |
| 28 | simp2 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) → 𝑎 ⊆ ( Moore ‘ 𝑋 ) ) | |
| 29 | 28 | sselda | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) ∧ 𝑏 ∈ 𝑎 ) → 𝑏 ∈ ( Moore ‘ 𝑋 ) ) |
| 30 | mre1cl | ⊢ ( 𝑏 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ 𝑏 ) | |
| 31 | 29 30 | syl | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) ∧ 𝑏 ∈ 𝑎 ) → 𝑋 ∈ 𝑏 ) |
| 32 | 31 | ralrimiva | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) → ∀ 𝑏 ∈ 𝑎 𝑋 ∈ 𝑏 ) |
| 33 | elintg | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∈ ∩ 𝑎 ↔ ∀ 𝑏 ∈ 𝑎 𝑋 ∈ 𝑏 ) ) | |
| 34 | 33 | 3ad2ant1 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) → ( 𝑋 ∈ ∩ 𝑎 ↔ ∀ 𝑏 ∈ 𝑎 𝑋 ∈ 𝑏 ) ) |
| 35 | 32 34 | mpbird | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) → 𝑋 ∈ ∩ 𝑎 ) |
| 36 | simp12 | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅ ) → 𝑎 ⊆ ( Moore ‘ 𝑋 ) ) | |
| 37 | 36 | sselda | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ 𝑎 ) → 𝑐 ∈ ( Moore ‘ 𝑋 ) ) |
| 38 | simpl2 | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ 𝑎 ) → 𝑏 ⊆ ∩ 𝑎 ) | |
| 39 | intss1 | ⊢ ( 𝑐 ∈ 𝑎 → ∩ 𝑎 ⊆ 𝑐 ) | |
| 40 | 39 | adantl | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ 𝑎 ) → ∩ 𝑎 ⊆ 𝑐 ) |
| 41 | 38 40 | sstrd | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ 𝑎 ) → 𝑏 ⊆ 𝑐 ) |
| 42 | simpl3 | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ 𝑎 ) → 𝑏 ≠ ∅ ) | |
| 43 | mreintcl | ⊢ ( ( 𝑐 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑏 ⊆ 𝑐 ∧ 𝑏 ≠ ∅ ) → ∩ 𝑏 ∈ 𝑐 ) | |
| 44 | 37 41 42 43 | syl3anc | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ 𝑎 ) → ∩ 𝑏 ∈ 𝑐 ) |
| 45 | 44 | ralrimiva | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅ ) → ∀ 𝑐 ∈ 𝑎 ∩ 𝑏 ∈ 𝑐 ) |
| 46 | intex | ⊢ ( 𝑏 ≠ ∅ ↔ ∩ 𝑏 ∈ V ) | |
| 47 | elintg | ⊢ ( ∩ 𝑏 ∈ V → ( ∩ 𝑏 ∈ ∩ 𝑎 ↔ ∀ 𝑐 ∈ 𝑎 ∩ 𝑏 ∈ 𝑐 ) ) | |
| 48 | 46 47 | sylbi | ⊢ ( 𝑏 ≠ ∅ → ( ∩ 𝑏 ∈ ∩ 𝑎 ↔ ∀ 𝑐 ∈ 𝑎 ∩ 𝑏 ∈ 𝑐 ) ) |
| 49 | 48 | 3ad2ant3 | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅ ) → ( ∩ 𝑏 ∈ ∩ 𝑎 ↔ ∀ 𝑐 ∈ 𝑎 ∩ 𝑏 ∈ 𝑐 ) ) |
| 50 | 45 49 | mpbird | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅ ) → ∩ 𝑏 ∈ ∩ 𝑎 ) |
| 51 | 27 35 50 | ismred | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) → ∩ 𝑎 ∈ ( Moore ‘ 𝑋 ) ) |
| 52 | 5 15 51 | ismred | ⊢ ( 𝑋 ∈ 𝑉 → ( Moore ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ) |