This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The relative intersection of a set of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mrerintcl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ) → ( 𝑋 ∩ ∩ 𝑆 ) ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rint0 | ⊢ ( 𝑆 = ∅ → ( 𝑋 ∩ ∩ 𝑆 ) = 𝑋 ) | |
| 2 | 1 | adantl | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ) ∧ 𝑆 = ∅ ) → ( 𝑋 ∩ ∩ 𝑆 ) = 𝑋 ) |
| 3 | mre1cl | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ 𝐶 ) | |
| 4 | 3 | ad2antrr | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ) ∧ 𝑆 = ∅ ) → 𝑋 ∈ 𝐶 ) |
| 5 | 2 4 | eqeltrd | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ) ∧ 𝑆 = ∅ ) → ( 𝑋 ∩ ∩ 𝑆 ) ∈ 𝐶 ) |
| 6 | simp2 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅ ) → 𝑆 ⊆ 𝐶 ) | |
| 7 | mresspw | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 ⊆ 𝒫 𝑋 ) | |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅ ) → 𝐶 ⊆ 𝒫 𝑋 ) |
| 9 | 6 8 | sstrd | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅ ) → 𝑆 ⊆ 𝒫 𝑋 ) |
| 10 | simp3 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅ ) → 𝑆 ≠ ∅ ) | |
| 11 | rintn0 | ⊢ ( ( 𝑆 ⊆ 𝒫 𝑋 ∧ 𝑆 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑆 ) = ∩ 𝑆 ) | |
| 12 | 9 10 11 | syl2anc | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑆 ) = ∩ 𝑆 ) |
| 13 | mreintcl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ 𝐶 ) | |
| 14 | 12 13 | eqeltrd | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑆 ) ∈ 𝐶 ) |
| 15 | 14 | 3expa | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ) ∧ 𝑆 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑆 ) ∈ 𝐶 ) |
| 16 | 5 15 | pm2.61dane | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ) → ( 𝑋 ∩ ∩ 𝑆 ) ∈ 𝐶 ) |