This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Algebraicity of a conditional point closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acsfn | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ( 𝑇 ⊆ 𝑎 → 𝐾 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt | ⊢ Fun ( 𝑏 ∈ 𝒫 𝑋 ↦ if ( 𝑏 = 𝑇 , { 𝐾 } , ∅ ) ) | |
| 2 | funiunfv | ⊢ ( Fun ( 𝑏 ∈ 𝒫 𝑋 ↦ if ( 𝑏 = 𝑇 , { 𝐾 } , ∅ ) ) → ∪ 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) ( ( 𝑏 ∈ 𝒫 𝑋 ↦ if ( 𝑏 = 𝑇 , { 𝐾 } , ∅ ) ) ‘ 𝑐 ) = ∪ ( ( 𝑏 ∈ 𝒫 𝑋 ↦ if ( 𝑏 = 𝑇 , { 𝐾 } , ∅ ) ) “ ( 𝒫 𝑎 ∩ Fin ) ) ) | |
| 3 | 1 2 | mp1i | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → ∪ 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) ( ( 𝑏 ∈ 𝒫 𝑋 ↦ if ( 𝑏 = 𝑇 , { 𝐾 } , ∅ ) ) ‘ 𝑐 ) = ∪ ( ( 𝑏 ∈ 𝒫 𝑋 ↦ if ( 𝑏 = 𝑇 , { 𝐾 } , ∅ ) ) “ ( 𝒫 𝑎 ∩ Fin ) ) ) |
| 4 | elinel1 | ⊢ ( 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) → 𝑐 ∈ 𝒫 𝑎 ) | |
| 5 | 4 | elpwid | ⊢ ( 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) → 𝑐 ⊆ 𝑎 ) |
| 6 | elpwi | ⊢ ( 𝑎 ∈ 𝒫 𝑋 → 𝑎 ⊆ 𝑋 ) | |
| 7 | 5 6 | sylan9ssr | ⊢ ( ( 𝑎 ∈ 𝒫 𝑋 ∧ 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) ) → 𝑐 ⊆ 𝑋 ) |
| 8 | velpw | ⊢ ( 𝑐 ∈ 𝒫 𝑋 ↔ 𝑐 ⊆ 𝑋 ) | |
| 9 | 7 8 | sylibr | ⊢ ( ( 𝑎 ∈ 𝒫 𝑋 ∧ 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) ) → 𝑐 ∈ 𝒫 𝑋 ) |
| 10 | 9 | adantll | ⊢ ( ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) ) → 𝑐 ∈ 𝒫 𝑋 ) |
| 11 | eqeq1 | ⊢ ( 𝑏 = 𝑐 → ( 𝑏 = 𝑇 ↔ 𝑐 = 𝑇 ) ) | |
| 12 | 11 | ifbid | ⊢ ( 𝑏 = 𝑐 → if ( 𝑏 = 𝑇 , { 𝐾 } , ∅ ) = if ( 𝑐 = 𝑇 , { 𝐾 } , ∅ ) ) |
| 13 | eqid | ⊢ ( 𝑏 ∈ 𝒫 𝑋 ↦ if ( 𝑏 = 𝑇 , { 𝐾 } , ∅ ) ) = ( 𝑏 ∈ 𝒫 𝑋 ↦ if ( 𝑏 = 𝑇 , { 𝐾 } , ∅ ) ) | |
| 14 | snex | ⊢ { 𝐾 } ∈ V | |
| 15 | 0ex | ⊢ ∅ ∈ V | |
| 16 | 14 15 | ifex | ⊢ if ( 𝑐 = 𝑇 , { 𝐾 } , ∅ ) ∈ V |
| 17 | 12 13 16 | fvmpt | ⊢ ( 𝑐 ∈ 𝒫 𝑋 → ( ( 𝑏 ∈ 𝒫 𝑋 ↦ if ( 𝑏 = 𝑇 , { 𝐾 } , ∅ ) ) ‘ 𝑐 ) = if ( 𝑐 = 𝑇 , { 𝐾 } , ∅ ) ) |
| 18 | 10 17 | syl | ⊢ ( ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) ) → ( ( 𝑏 ∈ 𝒫 𝑋 ↦ if ( 𝑏 = 𝑇 , { 𝐾 } , ∅ ) ) ‘ 𝑐 ) = if ( 𝑐 = 𝑇 , { 𝐾 } , ∅ ) ) |
| 19 | 18 | iuneq2dv | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → ∪ 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) ( ( 𝑏 ∈ 𝒫 𝑋 ↦ if ( 𝑏 = 𝑇 , { 𝐾 } , ∅ ) ) ‘ 𝑐 ) = ∪ 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) if ( 𝑐 = 𝑇 , { 𝐾 } , ∅ ) ) |
| 20 | 3 19 | eqtr3d | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → ∪ ( ( 𝑏 ∈ 𝒫 𝑋 ↦ if ( 𝑏 = 𝑇 , { 𝐾 } , ∅ ) ) “ ( 𝒫 𝑎 ∩ Fin ) ) = ∪ 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) if ( 𝑐 = 𝑇 , { 𝐾 } , ∅ ) ) |
| 21 | 20 | sseq1d | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( ∪ ( ( 𝑏 ∈ 𝒫 𝑋 ↦ if ( 𝑏 = 𝑇 , { 𝐾 } , ∅ ) ) “ ( 𝒫 𝑎 ∩ Fin ) ) ⊆ 𝑎 ↔ ∪ 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) if ( 𝑐 = 𝑇 , { 𝐾 } , ∅ ) ⊆ 𝑎 ) ) |
| 22 | iunss | ⊢ ( ∪ 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) if ( 𝑐 = 𝑇 , { 𝐾 } , ∅ ) ⊆ 𝑎 ↔ ∀ 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) if ( 𝑐 = 𝑇 , { 𝐾 } , ∅ ) ⊆ 𝑎 ) | |
| 23 | sseq1 | ⊢ ( { 𝐾 } = if ( 𝑐 = 𝑇 , { 𝐾 } , ∅ ) → ( { 𝐾 } ⊆ 𝑎 ↔ if ( 𝑐 = 𝑇 , { 𝐾 } , ∅ ) ⊆ 𝑎 ) ) | |
| 24 | 23 | bibi1d | ⊢ ( { 𝐾 } = if ( 𝑐 = 𝑇 , { 𝐾 } , ∅ ) → ( ( { 𝐾 } ⊆ 𝑎 ↔ ( 𝑐 = 𝑇 → 𝐾 ∈ 𝑎 ) ) ↔ ( if ( 𝑐 = 𝑇 , { 𝐾 } , ∅ ) ⊆ 𝑎 ↔ ( 𝑐 = 𝑇 → 𝐾 ∈ 𝑎 ) ) ) ) |
| 25 | sseq1 | ⊢ ( ∅ = if ( 𝑐 = 𝑇 , { 𝐾 } , ∅ ) → ( ∅ ⊆ 𝑎 ↔ if ( 𝑐 = 𝑇 , { 𝐾 } , ∅ ) ⊆ 𝑎 ) ) | |
| 26 | 25 | bibi1d | ⊢ ( ∅ = if ( 𝑐 = 𝑇 , { 𝐾 } , ∅ ) → ( ( ∅ ⊆ 𝑎 ↔ ( 𝑐 = 𝑇 → 𝐾 ∈ 𝑎 ) ) ↔ ( if ( 𝑐 = 𝑇 , { 𝐾 } , ∅ ) ⊆ 𝑎 ↔ ( 𝑐 = 𝑇 → 𝐾 ∈ 𝑎 ) ) ) ) |
| 27 | snssg | ⊢ ( 𝐾 ∈ 𝑋 → ( 𝐾 ∈ 𝑎 ↔ { 𝐾 } ⊆ 𝑎 ) ) | |
| 28 | 27 | adantr | ⊢ ( ( 𝐾 ∈ 𝑋 ∧ 𝑐 = 𝑇 ) → ( 𝐾 ∈ 𝑎 ↔ { 𝐾 } ⊆ 𝑎 ) ) |
| 29 | biimt | ⊢ ( 𝑐 = 𝑇 → ( 𝐾 ∈ 𝑎 ↔ ( 𝑐 = 𝑇 → 𝐾 ∈ 𝑎 ) ) ) | |
| 30 | 29 | adantl | ⊢ ( ( 𝐾 ∈ 𝑋 ∧ 𝑐 = 𝑇 ) → ( 𝐾 ∈ 𝑎 ↔ ( 𝑐 = 𝑇 → 𝐾 ∈ 𝑎 ) ) ) |
| 31 | 28 30 | bitr3d | ⊢ ( ( 𝐾 ∈ 𝑋 ∧ 𝑐 = 𝑇 ) → ( { 𝐾 } ⊆ 𝑎 ↔ ( 𝑐 = 𝑇 → 𝐾 ∈ 𝑎 ) ) ) |
| 32 | 0ss | ⊢ ∅ ⊆ 𝑎 | |
| 33 | 32 | a1i | ⊢ ( ¬ 𝑐 = 𝑇 → ∅ ⊆ 𝑎 ) |
| 34 | pm2.21 | ⊢ ( ¬ 𝑐 = 𝑇 → ( 𝑐 = 𝑇 → 𝐾 ∈ 𝑎 ) ) | |
| 35 | 33 34 | 2thd | ⊢ ( ¬ 𝑐 = 𝑇 → ( ∅ ⊆ 𝑎 ↔ ( 𝑐 = 𝑇 → 𝐾 ∈ 𝑎 ) ) ) |
| 36 | 35 | adantl | ⊢ ( ( 𝐾 ∈ 𝑋 ∧ ¬ 𝑐 = 𝑇 ) → ( ∅ ⊆ 𝑎 ↔ ( 𝑐 = 𝑇 → 𝐾 ∈ 𝑎 ) ) ) |
| 37 | 24 26 31 36 | ifbothda | ⊢ ( 𝐾 ∈ 𝑋 → ( if ( 𝑐 = 𝑇 , { 𝐾 } , ∅ ) ⊆ 𝑎 ↔ ( 𝑐 = 𝑇 → 𝐾 ∈ 𝑎 ) ) ) |
| 38 | 37 | ralbidv | ⊢ ( 𝐾 ∈ 𝑋 → ( ∀ 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) if ( 𝑐 = 𝑇 , { 𝐾 } , ∅ ) ⊆ 𝑎 ↔ ∀ 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) ( 𝑐 = 𝑇 → 𝐾 ∈ 𝑎 ) ) ) |
| 39 | 38 | ad3antlr | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( ∀ 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) if ( 𝑐 = 𝑇 , { 𝐾 } , ∅ ) ⊆ 𝑎 ↔ ∀ 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) ( 𝑐 = 𝑇 → 𝐾 ∈ 𝑎 ) ) ) |
| 40 | 22 39 | bitrid | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( ∪ 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) if ( 𝑐 = 𝑇 , { 𝐾 } , ∅ ) ⊆ 𝑎 ↔ ∀ 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) ( 𝑐 = 𝑇 → 𝐾 ∈ 𝑎 ) ) ) |
| 41 | inss1 | ⊢ ( 𝒫 𝑎 ∩ Fin ) ⊆ 𝒫 𝑎 | |
| 42 | 6 | sspwd | ⊢ ( 𝑎 ∈ 𝒫 𝑋 → 𝒫 𝑎 ⊆ 𝒫 𝑋 ) |
| 43 | 41 42 | sstrid | ⊢ ( 𝑎 ∈ 𝒫 𝑋 → ( 𝒫 𝑎 ∩ Fin ) ⊆ 𝒫 𝑋 ) |
| 44 | 43 | adantl | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝒫 𝑎 ∩ Fin ) ⊆ 𝒫 𝑋 ) |
| 45 | ralss | ⊢ ( ( 𝒫 𝑎 ∩ Fin ) ⊆ 𝒫 𝑋 → ( ∀ 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) ( 𝑐 = 𝑇 → 𝐾 ∈ 𝑎 ) ↔ ∀ 𝑐 ∈ 𝒫 𝑋 ( 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) → ( 𝑐 = 𝑇 → 𝐾 ∈ 𝑎 ) ) ) ) | |
| 46 | 44 45 | syl | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( ∀ 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) ( 𝑐 = 𝑇 → 𝐾 ∈ 𝑎 ) ↔ ∀ 𝑐 ∈ 𝒫 𝑋 ( 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) → ( 𝑐 = 𝑇 → 𝐾 ∈ 𝑎 ) ) ) ) |
| 47 | bi2.04 | ⊢ ( ( 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) → ( 𝑐 = 𝑇 → 𝐾 ∈ 𝑎 ) ) ↔ ( 𝑐 = 𝑇 → ( 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) → 𝐾 ∈ 𝑎 ) ) ) | |
| 48 | 47 | ralbii | ⊢ ( ∀ 𝑐 ∈ 𝒫 𝑋 ( 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) → ( 𝑐 = 𝑇 → 𝐾 ∈ 𝑎 ) ) ↔ ∀ 𝑐 ∈ 𝒫 𝑋 ( 𝑐 = 𝑇 → ( 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) → 𝐾 ∈ 𝑎 ) ) ) |
| 49 | elpwg | ⊢ ( 𝑇 ∈ Fin → ( 𝑇 ∈ 𝒫 𝑋 ↔ 𝑇 ⊆ 𝑋 ) ) | |
| 50 | 49 | biimparc | ⊢ ( ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) → 𝑇 ∈ 𝒫 𝑋 ) |
| 51 | 50 | ad2antlr | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → 𝑇 ∈ 𝒫 𝑋 ) |
| 52 | eleq1 | ⊢ ( 𝑐 = 𝑇 → ( 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) ↔ 𝑇 ∈ ( 𝒫 𝑎 ∩ Fin ) ) ) | |
| 53 | 52 | imbi1d | ⊢ ( 𝑐 = 𝑇 → ( ( 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) → 𝐾 ∈ 𝑎 ) ↔ ( 𝑇 ∈ ( 𝒫 𝑎 ∩ Fin ) → 𝐾 ∈ 𝑎 ) ) ) |
| 54 | 53 | ceqsralv | ⊢ ( 𝑇 ∈ 𝒫 𝑋 → ( ∀ 𝑐 ∈ 𝒫 𝑋 ( 𝑐 = 𝑇 → ( 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) → 𝐾 ∈ 𝑎 ) ) ↔ ( 𝑇 ∈ ( 𝒫 𝑎 ∩ Fin ) → 𝐾 ∈ 𝑎 ) ) ) |
| 55 | 51 54 | syl | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( ∀ 𝑐 ∈ 𝒫 𝑋 ( 𝑐 = 𝑇 → ( 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) → 𝐾 ∈ 𝑎 ) ) ↔ ( 𝑇 ∈ ( 𝒫 𝑎 ∩ Fin ) → 𝐾 ∈ 𝑎 ) ) ) |
| 56 | 48 55 | bitrid | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( ∀ 𝑐 ∈ 𝒫 𝑋 ( 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) → ( 𝑐 = 𝑇 → 𝐾 ∈ 𝑎 ) ) ↔ ( 𝑇 ∈ ( 𝒫 𝑎 ∩ Fin ) → 𝐾 ∈ 𝑎 ) ) ) |
| 57 | simplrr | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → 𝑇 ∈ Fin ) | |
| 58 | 57 | biantrud | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝑇 ∈ 𝒫 𝑎 ↔ ( 𝑇 ∈ 𝒫 𝑎 ∧ 𝑇 ∈ Fin ) ) ) |
| 59 | elin | ⊢ ( 𝑇 ∈ ( 𝒫 𝑎 ∩ Fin ) ↔ ( 𝑇 ∈ 𝒫 𝑎 ∧ 𝑇 ∈ Fin ) ) | |
| 60 | 58 59 | bitr4di | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝑇 ∈ 𝒫 𝑎 ↔ 𝑇 ∈ ( 𝒫 𝑎 ∩ Fin ) ) ) |
| 61 | vex | ⊢ 𝑎 ∈ V | |
| 62 | 61 | elpw2 | ⊢ ( 𝑇 ∈ 𝒫 𝑎 ↔ 𝑇 ⊆ 𝑎 ) |
| 63 | 60 62 | bitr3di | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝑇 ∈ ( 𝒫 𝑎 ∩ Fin ) ↔ 𝑇 ⊆ 𝑎 ) ) |
| 64 | 63 | imbi1d | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( ( 𝑇 ∈ ( 𝒫 𝑎 ∩ Fin ) → 𝐾 ∈ 𝑎 ) ↔ ( 𝑇 ⊆ 𝑎 → 𝐾 ∈ 𝑎 ) ) ) |
| 65 | 46 56 64 | 3bitrd | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( ∀ 𝑐 ∈ ( 𝒫 𝑎 ∩ Fin ) ( 𝑐 = 𝑇 → 𝐾 ∈ 𝑎 ) ↔ ( 𝑇 ⊆ 𝑎 → 𝐾 ∈ 𝑎 ) ) ) |
| 66 | 21 40 65 | 3bitrrd | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( ( 𝑇 ⊆ 𝑎 → 𝐾 ∈ 𝑎 ) ↔ ∪ ( ( 𝑏 ∈ 𝒫 𝑋 ↦ if ( 𝑏 = 𝑇 , { 𝐾 } , ∅ ) ) “ ( 𝒫 𝑎 ∩ Fin ) ) ⊆ 𝑎 ) ) |
| 67 | 66 | rabbidva | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ( 𝑇 ⊆ 𝑎 → 𝐾 ∈ 𝑎 ) } = { 𝑎 ∈ 𝒫 𝑋 ∣ ∪ ( ( 𝑏 ∈ 𝒫 𝑋 ↦ if ( 𝑏 = 𝑇 , { 𝐾 } , ∅ ) ) “ ( 𝒫 𝑎 ∩ Fin ) ) ⊆ 𝑎 } ) |
| 68 | simpll | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) → 𝑋 ∈ 𝑉 ) | |
| 69 | snelpwi | ⊢ ( 𝐾 ∈ 𝑋 → { 𝐾 } ∈ 𝒫 𝑋 ) | |
| 70 | 69 | ad2antlr | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) → { 𝐾 } ∈ 𝒫 𝑋 ) |
| 71 | 0elpw | ⊢ ∅ ∈ 𝒫 𝑋 | |
| 72 | ifcl | ⊢ ( ( { 𝐾 } ∈ 𝒫 𝑋 ∧ ∅ ∈ 𝒫 𝑋 ) → if ( 𝑏 = 𝑇 , { 𝐾 } , ∅ ) ∈ 𝒫 𝑋 ) | |
| 73 | 70 71 72 | sylancl | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) → if ( 𝑏 = 𝑇 , { 𝐾 } , ∅ ) ∈ 𝒫 𝑋 ) |
| 74 | 73 | adantr | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) ∧ 𝑏 ∈ 𝒫 𝑋 ) → if ( 𝑏 = 𝑇 , { 𝐾 } , ∅ ) ∈ 𝒫 𝑋 ) |
| 75 | 74 | fmpttd | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) → ( 𝑏 ∈ 𝒫 𝑋 ↦ if ( 𝑏 = 𝑇 , { 𝐾 } , ∅ ) ) : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) |
| 76 | isacs1i | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑏 ∈ 𝒫 𝑋 ↦ if ( 𝑏 = 𝑇 , { 𝐾 } , ∅ ) ) : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∪ ( ( 𝑏 ∈ 𝒫 𝑋 ↦ if ( 𝑏 = 𝑇 , { 𝐾 } , ∅ ) ) “ ( 𝒫 𝑎 ∩ Fin ) ) ⊆ 𝑎 } ∈ ( ACS ‘ 𝑋 ) ) | |
| 77 | 68 75 76 | syl2anc | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∪ ( ( 𝑏 ∈ 𝒫 𝑋 ↦ if ( 𝑏 = 𝑇 , { 𝐾 } , ∅ ) ) “ ( 𝒫 𝑎 ∩ Fin ) ) ⊆ 𝑎 } ∈ ( ACS ‘ 𝑋 ) ) |
| 78 | 67 77 | eqeltrd | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋 ) ∧ ( 𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin ) ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ( 𝑇 ⊆ 𝑎 → 𝐾 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) |