This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is an algebraic closure system iff it is specified by some function of the finite subsets, such that a set is closed iff it does not expand under the operation. (Contributed by Stefan O'Rear, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isacs | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → 𝑋 ∈ V ) | |
| 2 | elfvex | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ V ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) ) → 𝑋 ∈ V ) |
| 4 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( Moore ‘ 𝑥 ) = ( Moore ‘ 𝑋 ) ) | |
| 5 | pweq | ⊢ ( 𝑥 = 𝑋 → 𝒫 𝑥 = 𝒫 𝑋 ) | |
| 6 | 5 5 | feq23d | ⊢ ( 𝑥 = 𝑋 → ( 𝑓 : 𝒫 𝑥 ⟶ 𝒫 𝑥 ↔ 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) ) |
| 7 | 5 | raleqdv | ⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑠 ∈ 𝒫 𝑥 ( 𝑠 ∈ 𝑐 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ↔ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝑐 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) ) |
| 8 | 6 7 | anbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑓 : 𝒫 𝑥 ⟶ 𝒫 𝑥 ∧ ∀ 𝑠 ∈ 𝒫 𝑥 ( 𝑠 ∈ 𝑐 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) ↔ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝑐 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) ) ) |
| 9 | 8 | exbidv | ⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑓 ( 𝑓 : 𝒫 𝑥 ⟶ 𝒫 𝑥 ∧ ∀ 𝑠 ∈ 𝒫 𝑥 ( 𝑠 ∈ 𝑐 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) ↔ ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝑐 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) ) ) |
| 10 | 4 9 | rabeqbidv | ⊢ ( 𝑥 = 𝑋 → { 𝑐 ∈ ( Moore ‘ 𝑥 ) ∣ ∃ 𝑓 ( 𝑓 : 𝒫 𝑥 ⟶ 𝒫 𝑥 ∧ ∀ 𝑠 ∈ 𝒫 𝑥 ( 𝑠 ∈ 𝑐 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) } = { 𝑐 ∈ ( Moore ‘ 𝑋 ) ∣ ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝑐 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) } ) |
| 11 | df-acs | ⊢ ACS = ( 𝑥 ∈ V ↦ { 𝑐 ∈ ( Moore ‘ 𝑥 ) ∣ ∃ 𝑓 ( 𝑓 : 𝒫 𝑥 ⟶ 𝒫 𝑥 ∧ ∀ 𝑠 ∈ 𝒫 𝑥 ( 𝑠 ∈ 𝑐 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) } ) | |
| 12 | fvex | ⊢ ( Moore ‘ 𝑋 ) ∈ V | |
| 13 | 12 | rabex | ⊢ { 𝑐 ∈ ( Moore ‘ 𝑋 ) ∣ ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝑐 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) } ∈ V |
| 14 | 10 11 13 | fvmpt | ⊢ ( 𝑋 ∈ V → ( ACS ‘ 𝑋 ) = { 𝑐 ∈ ( Moore ‘ 𝑋 ) ∣ ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝑐 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) } ) |
| 15 | 14 | eleq2d | ⊢ ( 𝑋 ∈ V → ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ↔ 𝐶 ∈ { 𝑐 ∈ ( Moore ‘ 𝑋 ) ∣ ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝑐 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) } ) ) |
| 16 | eleq2 | ⊢ ( 𝑐 = 𝐶 → ( 𝑠 ∈ 𝑐 ↔ 𝑠 ∈ 𝐶 ) ) | |
| 17 | 16 | bibi1d | ⊢ ( 𝑐 = 𝐶 → ( ( 𝑠 ∈ 𝑐 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ↔ ( 𝑠 ∈ 𝐶 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) ) |
| 18 | 17 | ralbidv | ⊢ ( 𝑐 = 𝐶 → ( ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝑐 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ↔ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) ) |
| 19 | 18 | anbi2d | ⊢ ( 𝑐 = 𝐶 → ( ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝑐 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) ↔ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) ) ) |
| 20 | 19 | exbidv | ⊢ ( 𝑐 = 𝐶 → ( ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝑐 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) ↔ ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) ) ) |
| 21 | 20 | elrab | ⊢ ( 𝐶 ∈ { 𝑐 ∈ ( Moore ‘ 𝑋 ) ∣ ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝑐 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) } ↔ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) ) ) |
| 22 | 15 21 | bitrdi | ⊢ ( 𝑋 ∈ V → ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) ) ) ) |
| 23 | 1 3 22 | pm5.21nii | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) ) ) |