This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a Moore collection, using restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismred2.ss | ⊢ ( 𝜑 → 𝐶 ⊆ 𝒫 𝑋 ) | |
| ismred2.in | ⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ) → ( 𝑋 ∩ ∩ 𝑠 ) ∈ 𝐶 ) | ||
| Assertion | ismred2 | ⊢ ( 𝜑 → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismred2.ss | ⊢ ( 𝜑 → 𝐶 ⊆ 𝒫 𝑋 ) | |
| 2 | ismred2.in | ⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ) → ( 𝑋 ∩ ∩ 𝑠 ) ∈ 𝐶 ) | |
| 3 | eqid | ⊢ ∅ = ∅ | |
| 4 | rint0 | ⊢ ( ∅ = ∅ → ( 𝑋 ∩ ∩ ∅ ) = 𝑋 ) | |
| 5 | 3 4 | ax-mp | ⊢ ( 𝑋 ∩ ∩ ∅ ) = 𝑋 |
| 6 | 0ss | ⊢ ∅ ⊆ 𝐶 | |
| 7 | 0ex | ⊢ ∅ ∈ V | |
| 8 | sseq1 | ⊢ ( 𝑠 = ∅ → ( 𝑠 ⊆ 𝐶 ↔ ∅ ⊆ 𝐶 ) ) | |
| 9 | 8 | anbi2d | ⊢ ( 𝑠 = ∅ → ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ) ↔ ( 𝜑 ∧ ∅ ⊆ 𝐶 ) ) ) |
| 10 | inteq | ⊢ ( 𝑠 = ∅ → ∩ 𝑠 = ∩ ∅ ) | |
| 11 | 10 | ineq2d | ⊢ ( 𝑠 = ∅ → ( 𝑋 ∩ ∩ 𝑠 ) = ( 𝑋 ∩ ∩ ∅ ) ) |
| 12 | 11 | eleq1d | ⊢ ( 𝑠 = ∅ → ( ( 𝑋 ∩ ∩ 𝑠 ) ∈ 𝐶 ↔ ( 𝑋 ∩ ∩ ∅ ) ∈ 𝐶 ) ) |
| 13 | 9 12 | imbi12d | ⊢ ( 𝑠 = ∅ → ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ) → ( 𝑋 ∩ ∩ 𝑠 ) ∈ 𝐶 ) ↔ ( ( 𝜑 ∧ ∅ ⊆ 𝐶 ) → ( 𝑋 ∩ ∩ ∅ ) ∈ 𝐶 ) ) ) |
| 14 | 7 13 2 | vtocl | ⊢ ( ( 𝜑 ∧ ∅ ⊆ 𝐶 ) → ( 𝑋 ∩ ∩ ∅ ) ∈ 𝐶 ) |
| 15 | 6 14 | mpan2 | ⊢ ( 𝜑 → ( 𝑋 ∩ ∩ ∅ ) ∈ 𝐶 ) |
| 16 | 5 15 | eqeltrrid | ⊢ ( 𝜑 → 𝑋 ∈ 𝐶 ) |
| 17 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅ ) → 𝑠 ⊆ 𝐶 ) | |
| 18 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅ ) → 𝐶 ⊆ 𝒫 𝑋 ) |
| 19 | 17 18 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅ ) → 𝑠 ⊆ 𝒫 𝑋 ) |
| 20 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅ ) → 𝑠 ≠ ∅ ) | |
| 21 | rintn0 | ⊢ ( ( 𝑠 ⊆ 𝒫 𝑋 ∧ 𝑠 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑠 ) = ∩ 𝑠 ) | |
| 22 | 19 20 21 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑠 ) = ∩ 𝑠 ) |
| 23 | 2 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑠 ) ∈ 𝐶 ) |
| 24 | 22 23 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅ ) → ∩ 𝑠 ∈ 𝐶 ) |
| 25 | 1 16 24 | ismred | ⊢ ( 𝜑 → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |