This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity element of the ring of power series. (Contributed by Mario Carneiro, 8-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrring.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrring.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| psrring.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| psr1.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| psr1.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| psr1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| psr1.u | ⊢ 𝑈 = ( 1r ‘ 𝑆 ) | ||
| Assertion | psr1 | ⊢ ( 𝜑 → 𝑈 = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrring.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrring.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | psrring.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 4 | psr1.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 5 | psr1.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 6 | psr1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 7 | psr1.u | ⊢ 𝑈 = ( 1r ‘ 𝑆 ) | |
| 8 | eqid | ⊢ ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 10 | 1 2 3 4 5 6 8 9 | psr1cl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 11 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝐼 ∈ 𝑉 ) |
| 12 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑅 ∈ Ring ) |
| 13 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 14 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) | |
| 15 | 1 11 12 4 5 6 8 9 13 14 | psrlidm | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ( .r ‘ 𝑆 ) 𝑦 ) = 𝑦 ) |
| 16 | 1 11 12 4 5 6 8 9 13 14 | psrridm | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑦 ( .r ‘ 𝑆 ) ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) = 𝑦 ) |
| 17 | 15 16 | jca | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( ( ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ( .r ‘ 𝑆 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑆 ) ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) = 𝑦 ) ) |
| 18 | 17 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ( .r ‘ 𝑆 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑆 ) ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) = 𝑦 ) ) |
| 19 | 1 2 3 | psrring | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 20 | 9 13 7 | isringid | ⊢ ( 𝑆 ∈ Ring → ( ( ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ∈ ( Base ‘ 𝑆 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ( .r ‘ 𝑆 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑆 ) ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) = 𝑦 ) ) ↔ 𝑈 = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) ) |
| 21 | 19 20 | syl | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ∈ ( Base ‘ 𝑆 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ( .r ‘ 𝑆 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑆 ) ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) = 𝑦 ) ) ↔ 𝑈 = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) ) |
| 22 | 10 18 21 | mpbi2and | ⊢ ( 𝜑 → 𝑈 = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) |