This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a ball, with reversed distance function arguments. (Contributed by NM, 10-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elbl3ps | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝐴 𝐷 𝑃 ) < 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elbl2ps | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝑃 𝐷 𝐴 ) < 𝑅 ) ) | |
| 2 | psmetsym | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑃 𝐷 𝐴 ) = ( 𝐴 𝐷 𝑃 ) ) | |
| 3 | 2 | 3expb | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝑃 𝐷 𝐴 ) = ( 𝐴 𝐷 𝑃 ) ) |
| 4 | 3 | adantlr | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝑃 𝐷 𝐴 ) = ( 𝐴 𝐷 𝑃 ) ) |
| 5 | 4 | breq1d | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑃 𝐷 𝐴 ) < 𝑅 ↔ ( 𝐴 𝐷 𝑃 ) < 𝑅 ) ) |
| 6 | 1 5 | bitrd | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝐴 𝐷 𝑃 ) < 𝑅 ) ) |