This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a filter base F generated by a metric D . (Contributed by Thierry Arnoux, 22-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metust.1 | ⊢ 𝐹 = ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| Assertion | metustel | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝐵 ∈ 𝐹 ↔ ∃ 𝑎 ∈ ℝ+ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metust.1 | ⊢ 𝐹 = ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| 2 | 1 | eleq2i | ⊢ ( 𝐵 ∈ 𝐹 ↔ 𝐵 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 3 | elex | ⊢ ( 𝐵 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → 𝐵 ∈ V ) | |
| 4 | 3 | a1i | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝐵 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → 𝐵 ∈ V ) ) |
| 5 | cnvexg | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ◡ 𝐷 ∈ V ) | |
| 6 | imaexg | ⊢ ( ◡ 𝐷 ∈ V → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∈ V ) | |
| 7 | eleq1a | ⊢ ( ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∈ V → ( 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) → 𝐵 ∈ V ) ) | |
| 8 | 5 6 7 | 3syl | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) → 𝐵 ∈ V ) ) |
| 9 | 8 | rexlimdvw | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ∃ 𝑎 ∈ ℝ+ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) → 𝐵 ∈ V ) ) |
| 10 | eqid | ⊢ ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) = ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| 11 | 10 | elrnmpt | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑎 ∈ ℝ+ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 12 | 11 | a1i | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝐵 ∈ V → ( 𝐵 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑎 ∈ ℝ+ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ) |
| 13 | 4 9 12 | pm5.21ndd | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝐵 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑎 ∈ ℝ+ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 14 | 2 13 | bitrid | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝐵 ∈ 𝐹 ↔ ∃ 𝑎 ∈ ℝ+ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |