This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say a mapping from metric C to metric D is continuous. Theorem 10.1 of Munkres p. 127. The second biconditional argument says that for every positive "epsilon" y there is a positive "delta" z such that a distance less than delta in C maps to a distance less than epsilon in D . (Contributed by NM, 15-May-2007) (Revised by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metcn.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| metcn.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | ||
| Assertion | metcn | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metcn.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| 2 | metcn.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | |
| 3 | 1 | mopntopon | ⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 4 | 2 | mopntopon | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 5 | cncnp | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ) ) ) | |
| 6 | 3 4 5 | syl2an | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ) ) ) |
| 7 | simplr | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 8 | 1 2 | metcnp | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |
| 9 | 8 | ad4ant124 | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |
| 10 | 7 9 | mpbirand | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
| 11 | 10 | ralbidva | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑥 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
| 12 | 11 | pm5.32da | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |
| 13 | 6 12 | bitrd | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |