This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a ball, alternative definition. (Contributed by Thierry Arnoux, 26-Jan-2018) (Revised by Thierry Arnoux, 11-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elbl4 | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐵 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ↔ 𝐵 ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpxr | ⊢ ( 𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ* ) | |
| 2 | blcomps | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐵 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ↔ 𝐴 ∈ ( 𝐵 ( ball ‘ 𝐷 ) 𝑅 ) ) ) | |
| 3 | 1 2 | sylanl2 | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐵 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ↔ 𝐴 ∈ ( 𝐵 ( ball ‘ 𝐷 ) 𝑅 ) ) ) |
| 4 | simpll | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) | |
| 5 | simprr | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) | |
| 6 | simplr | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝑅 ∈ ℝ+ ) | |
| 7 | blval2 | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐵 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( 𝐵 ( ball ‘ 𝐷 ) 𝑅 ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) “ { 𝐵 } ) ) | |
| 8 | 7 | eleq2d | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐵 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( 𝐴 ∈ ( 𝐵 ( ball ‘ 𝐷 ) 𝑅 ) ↔ 𝐴 ∈ ( ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) “ { 𝐵 } ) ) ) |
| 9 | 4 5 6 8 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐵 ( ball ‘ 𝐷 ) 𝑅 ) ↔ 𝐴 ∈ ( ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) “ { 𝐵 } ) ) ) |
| 10 | elimasng | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ ( ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) “ { 𝐵 } ) ↔ 〈 𝐵 , 𝐴 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) ) ) | |
| 11 | df-br | ⊢ ( 𝐵 ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) 𝐴 ↔ 〈 𝐵 , 𝐴 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) ) | |
| 12 | 10 11 | bitr4di | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ ( ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) “ { 𝐵 } ) ↔ 𝐵 ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) 𝐴 ) ) |
| 13 | 12 | ancoms | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ∈ ( ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) “ { 𝐵 } ) ↔ 𝐵 ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) 𝐴 ) ) |
| 14 | 13 | adantl | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 ∈ ( ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) “ { 𝐵 } ) ↔ 𝐵 ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) 𝐴 ) ) |
| 15 | 3 9 14 | 3bitrd | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐵 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ↔ 𝐵 ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) 𝐴 ) ) |