This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " F is a uniformly continuous function from uniform space U to uniform space V ", expressed with filter bases for the entourages. (Contributed by Thierry Arnoux, 26-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isucn2.u | ⊢ 𝑈 = ( ( 𝑋 × 𝑋 ) filGen 𝑅 ) | |
| isucn2.v | ⊢ 𝑉 = ( ( 𝑌 × 𝑌 ) filGen 𝑆 ) | ||
| isucn2.1 | ⊢ ( 𝜑 → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | ||
| isucn2.2 | ⊢ ( 𝜑 → 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) | ||
| isucn2.3 | ⊢ ( 𝜑 → 𝑅 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ) | ||
| isucn2.4 | ⊢ ( 𝜑 → 𝑆 ∈ ( fBas ‘ ( 𝑌 × 𝑌 ) ) ) | ||
| Assertion | isucn2 | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isucn2.u | ⊢ 𝑈 = ( ( 𝑋 × 𝑋 ) filGen 𝑅 ) | |
| 2 | isucn2.v | ⊢ 𝑉 = ( ( 𝑌 × 𝑌 ) filGen 𝑆 ) | |
| 3 | isucn2.1 | ⊢ ( 𝜑 → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 4 | isucn2.2 | ⊢ ( 𝜑 → 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) | |
| 5 | isucn2.3 | ⊢ ( 𝜑 → 𝑅 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ) | |
| 6 | isucn2.4 | ⊢ ( 𝜑 → 𝑆 ∈ ( fBas ‘ ( 𝑌 × 𝑌 ) ) ) | |
| 7 | isucn | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) ) | |
| 8 | 3 4 7 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 9 | breq | ⊢ ( 𝑣 = 𝑠 → ( ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) | |
| 10 | 9 | imbi2d | ⊢ ( 𝑣 = 𝑠 → ( ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 11 | 10 | ralbidv | ⊢ ( 𝑣 = 𝑠 → ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 12 | 11 | rexralbidv | ⊢ ( 𝑣 = 𝑠 → ( ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 13 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) | |
| 14 | ssfg | ⊢ ( 𝑆 ∈ ( fBas ‘ ( 𝑌 × 𝑌 ) ) → 𝑆 ⊆ ( ( 𝑌 × 𝑌 ) filGen 𝑆 ) ) | |
| 15 | 6 14 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ( ( 𝑌 × 𝑌 ) filGen 𝑆 ) ) |
| 16 | 15 2 | sseqtrrdi | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑉 ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → 𝑆 ⊆ 𝑉 ) |
| 18 | 17 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) → 𝑆 ⊆ 𝑉 ) |
| 19 | 18 | sselda | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → 𝑠 ∈ 𝑉 ) |
| 20 | 12 13 19 | rspcdva | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) |
| 21 | simpr | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ∈ 𝑈 ) | |
| 22 | 21 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝑅 ) ) |
| 23 | elfg | ⊢ ( 𝑅 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) → ( 𝑢 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝑅 ) ↔ ( 𝑢 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑟 ∈ 𝑅 𝑟 ⊆ 𝑢 ) ) ) | |
| 24 | 5 23 | syl | ⊢ ( 𝜑 → ( 𝑢 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝑅 ) ↔ ( 𝑢 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑟 ∈ 𝑅 𝑟 ⊆ 𝑢 ) ) ) |
| 25 | 24 | simplbda | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝑅 ) ) → ∃ 𝑟 ∈ 𝑅 𝑟 ⊆ 𝑢 ) |
| 26 | 22 25 | syldan | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ∃ 𝑟 ∈ 𝑅 𝑟 ⊆ 𝑢 ) |
| 27 | ssbr | ⊢ ( 𝑟 ⊆ 𝑢 → ( 𝑥 𝑟 𝑦 → 𝑥 𝑢 𝑦 ) ) | |
| 28 | 27 | imim1d | ⊢ ( 𝑟 ⊆ 𝑢 → ( ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 29 | 28 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) ∧ 𝑟 ⊆ 𝑢 ) → ( ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 30 | 29 | ralrimivw | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) ∧ 𝑟 ⊆ 𝑢 ) → ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 31 | 30 | ralrimivw | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) ∧ 𝑟 ⊆ 𝑢 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 32 | ralim | ⊢ ( ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) → ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 33 | 32 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 34 | ralim | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 35 | 31 33 34 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) ∧ 𝑟 ⊆ 𝑢 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 36 | 35 | ex | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( 𝑟 ⊆ 𝑢 → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 37 | 36 | reximdva | ⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑅 𝑟 ⊆ 𝑢 → ∃ 𝑟 ∈ 𝑅 ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 38 | 37 | adantr | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ∃ 𝑟 ∈ 𝑅 𝑟 ⊆ 𝑢 → ∃ 𝑟 ∈ 𝑅 ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 39 | 26 38 | mpd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ∃ 𝑟 ∈ 𝑅 ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 40 | r19.37v | ⊢ ( ∃ 𝑟 ∈ 𝑅 ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 41 | 39 40 | syl | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 42 | 41 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 43 | 42 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ( ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 44 | 20 43 | mpd | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) |
| 45 | 44 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) → ∀ 𝑠 ∈ 𝑆 ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) |
| 46 | ssfg | ⊢ ( 𝑅 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) → 𝑅 ⊆ ( ( 𝑋 × 𝑋 ) filGen 𝑅 ) ) | |
| 47 | 5 46 | syl | ⊢ ( 𝜑 → 𝑅 ⊆ ( ( 𝑋 × 𝑋 ) filGen 𝑅 ) ) |
| 48 | 47 1 | sseqtrrdi | ⊢ ( 𝜑 → 𝑅 ⊆ 𝑈 ) |
| 49 | ssrexv | ⊢ ( 𝑅 ⊆ 𝑈 → ( ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 50 | breq | ⊢ ( 𝑟 = 𝑢 → ( 𝑥 𝑟 𝑦 ↔ 𝑥 𝑢 𝑦 ) ) | |
| 51 | 50 | imbi1d | ⊢ ( 𝑟 = 𝑢 → ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 52 | 51 | 2ralbidv | ⊢ ( 𝑟 = 𝑢 → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 53 | 52 | cbvrexvw | ⊢ ( ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) |
| 54 | 49 53 | imbitrdi | ⊢ ( 𝑅 ⊆ 𝑈 → ( ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 55 | 48 54 | syl | ⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 56 | 55 | ralimdv | ⊢ ( 𝜑 → ( ∀ 𝑠 ∈ 𝑆 ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 57 | 56 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑠 ∈ 𝑆 ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 58 | nfv | ⊢ Ⅎ 𝑠 ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 59 | nfra1 | ⊢ Ⅎ 𝑠 ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) | |
| 60 | 58 59 | nfan | ⊢ Ⅎ 𝑠 ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) |
| 61 | nfv | ⊢ Ⅎ 𝑠 𝑣 ∈ 𝑉 | |
| 62 | 60 61 | nfan | ⊢ Ⅎ 𝑠 ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑉 ) |
| 63 | rspa | ⊢ ( ( ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) | |
| 64 | 63 | ad5ant24 | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑠 ⊆ 𝑣 ) → ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) |
| 65 | simp-4l | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑠 ⊆ 𝑣 ) → ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ) | |
| 66 | simplr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑠 ⊆ 𝑣 ) → 𝑠 ∈ 𝑆 ) | |
| 67 | simpr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑠 ⊆ 𝑣 ) → 𝑠 ⊆ 𝑣 ) | |
| 68 | ssbr | ⊢ ( 𝑠 ⊆ 𝑣 → ( ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) | |
| 69 | 68 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑠 ⊆ 𝑣 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) |
| 70 | 69 | imim2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑠 ⊆ 𝑣 ) → ( ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 71 | 70 | ralimdv | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑠 ⊆ 𝑣 ) → ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 72 | 71 | ralimdv | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑠 ⊆ 𝑣 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 73 | 72 | reximdv | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑠 ⊆ 𝑣 ) → ( ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 74 | 65 66 67 73 | syl21anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑠 ⊆ 𝑣 ) → ( ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 75 | 64 74 | mpd | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑠 ⊆ 𝑣 ) → ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) |
| 76 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑆 ∈ ( fBas ‘ ( 𝑌 × 𝑌 ) ) ) |
| 77 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ 𝑉 ) | |
| 78 | 77 2 | eleqtrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ ( ( 𝑌 × 𝑌 ) filGen 𝑆 ) ) |
| 79 | elfg | ⊢ ( 𝑆 ∈ ( fBas ‘ ( 𝑌 × 𝑌 ) ) → ( 𝑣 ∈ ( ( 𝑌 × 𝑌 ) filGen 𝑆 ) ↔ ( 𝑣 ⊆ ( 𝑌 × 𝑌 ) ∧ ∃ 𝑠 ∈ 𝑆 𝑠 ⊆ 𝑣 ) ) ) | |
| 80 | 79 | simplbda | ⊢ ( ( 𝑆 ∈ ( fBas ‘ ( 𝑌 × 𝑌 ) ) ∧ 𝑣 ∈ ( ( 𝑌 × 𝑌 ) filGen 𝑆 ) ) → ∃ 𝑠 ∈ 𝑆 𝑠 ⊆ 𝑣 ) |
| 81 | 76 78 80 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ∃ 𝑠 ∈ 𝑆 𝑠 ⊆ 𝑣 ) |
| 82 | 62 75 81 | r19.29af | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) |
| 83 | 82 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) → ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) |
| 84 | 83 | ex | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 85 | 57 84 | syld | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑠 ∈ 𝑆 ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 86 | 85 | imp | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) → ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) |
| 87 | 45 86 | impbida | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑠 ∈ 𝑆 ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 88 | 87 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 89 | 8 88 | bitrd | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |