This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for metnrm . (Contributed by Mario Carneiro, 14-Jan-2014) (Revised by Mario Carneiro, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metdscn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) | |
| metdscn.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| metnrmlem.1 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | ||
| metnrmlem.2 | ⊢ ( 𝜑 → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) | ||
| metnrmlem.3 | ⊢ ( 𝜑 → 𝑇 ∈ ( Clsd ‘ 𝐽 ) ) | ||
| metnrmlem.4 | ⊢ ( 𝜑 → ( 𝑆 ∩ 𝑇 ) = ∅ ) | ||
| metnrmlem.u | ⊢ 𝑈 = ∪ 𝑡 ∈ 𝑇 ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) | ||
| metnrmlem.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑇 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) | ||
| metnrmlem.v | ⊢ 𝑉 = ∪ 𝑠 ∈ 𝑆 ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) | ||
| Assertion | metnrmlem3 | ⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝐽 ∃ 𝑤 ∈ 𝐽 ( 𝑆 ⊆ 𝑧 ∧ 𝑇 ⊆ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metdscn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) | |
| 2 | metdscn.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 3 | metnrmlem.1 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 4 | metnrmlem.2 | ⊢ ( 𝜑 → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 5 | metnrmlem.3 | ⊢ ( 𝜑 → 𝑇 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 6 | metnrmlem.4 | ⊢ ( 𝜑 → ( 𝑆 ∩ 𝑇 ) = ∅ ) | |
| 7 | metnrmlem.u | ⊢ 𝑈 = ∪ 𝑡 ∈ 𝑇 ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) | |
| 8 | metnrmlem.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑇 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) | |
| 9 | metnrmlem.v | ⊢ 𝑉 = ∪ 𝑠 ∈ 𝑆 ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) | |
| 10 | incom | ⊢ ( 𝑇 ∩ 𝑆 ) = ( 𝑆 ∩ 𝑇 ) | |
| 11 | 10 6 | eqtrid | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑆 ) = ∅ ) |
| 12 | 8 2 3 5 4 11 9 | metnrmlem2 | ⊢ ( 𝜑 → ( 𝑉 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑉 ) ) |
| 13 | 12 | simpld | ⊢ ( 𝜑 → 𝑉 ∈ 𝐽 ) |
| 14 | 1 2 3 4 5 6 7 | metnrmlem2 | ⊢ ( 𝜑 → ( 𝑈 ∈ 𝐽 ∧ 𝑇 ⊆ 𝑈 ) ) |
| 15 | 14 | simpld | ⊢ ( 𝜑 → 𝑈 ∈ 𝐽 ) |
| 16 | 12 | simprd | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑉 ) |
| 17 | 14 | simprd | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑈 ) |
| 18 | 9 | ineq1i | ⊢ ( 𝑉 ∩ 𝑈 ) = ( ∪ 𝑠 ∈ 𝑆 ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) |
| 19 | iunin1 | ⊢ ∪ 𝑠 ∈ 𝑆 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) = ( ∪ 𝑠 ∈ 𝑆 ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) | |
| 20 | 18 19 | eqtr4i | ⊢ ( 𝑉 ∩ 𝑈 ) = ∪ 𝑠 ∈ 𝑆 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) |
| 21 | 7 | ineq2i | ⊢ ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) = ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ∪ 𝑡 ∈ 𝑇 ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) |
| 22 | iunin2 | ⊢ ∪ 𝑡 ∈ 𝑇 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) = ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ∪ 𝑡 ∈ 𝑇 ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) | |
| 23 | 21 22 | eqtr4i | ⊢ ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) = ∪ 𝑡 ∈ 𝑇 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) |
| 24 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 25 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 26 | 25 | cldss | ⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 27 | 4 26 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ∪ 𝐽 ) |
| 28 | 2 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 29 | 3 28 | syl | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 30 | 27 29 | sseqtrrd | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
| 31 | 30 | sselda | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → 𝑠 ∈ 𝑋 ) |
| 32 | 31 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → 𝑠 ∈ 𝑋 ) |
| 33 | 25 | cldss | ⊢ ( 𝑇 ∈ ( Clsd ‘ 𝐽 ) → 𝑇 ⊆ ∪ 𝐽 ) |
| 34 | 5 33 | syl | ⊢ ( 𝜑 → 𝑇 ⊆ ∪ 𝐽 ) |
| 35 | 34 29 | sseqtrrd | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑋 ) |
| 36 | 35 | sselda | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑋 ) |
| 37 | 36 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → 𝑡 ∈ 𝑋 ) |
| 38 | 8 2 3 5 4 11 | metnrmlem1a | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 0 < ( 𝐺 ‘ 𝑠 ) ∧ if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) ∈ ℝ+ ) ) |
| 39 | 38 | simprd | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) ∈ ℝ+ ) |
| 40 | 39 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) ∈ ℝ+ ) |
| 41 | 40 | rphalfcld | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ∈ ℝ+ ) |
| 42 | 41 | rpxrd | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ∈ ℝ* ) |
| 43 | 1 2 3 4 5 6 | metnrmlem1a | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 0 < ( 𝐹 ‘ 𝑡 ) ∧ if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ+ ) ) |
| 44 | 43 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( 0 < ( 𝐹 ‘ 𝑡 ) ∧ if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ+ ) ) |
| 45 | 44 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ+ ) |
| 46 | 45 | rphalfcld | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ∈ ℝ+ ) |
| 47 | 46 | rpxrd | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ∈ ℝ* ) |
| 48 | 40 | rpred | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) ∈ ℝ ) |
| 49 | 48 | rehalfcld | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ∈ ℝ ) |
| 50 | 45 | rpred | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) |
| 51 | 50 | rehalfcld | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ∈ ℝ ) |
| 52 | 49 51 | rexaddd | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) +𝑒 ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) = ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) + ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) |
| 53 | 48 | recnd | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) ∈ ℂ ) |
| 54 | 50 | recnd | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ∈ ℂ ) |
| 55 | 2cnd | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → 2 ∈ ℂ ) | |
| 56 | 2ne0 | ⊢ 2 ≠ 0 | |
| 57 | 56 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → 2 ≠ 0 ) |
| 58 | 53 54 55 57 | divdird | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) = ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) + ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) |
| 59 | 52 58 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) +𝑒 ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) = ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ) |
| 60 | 8 2 3 5 4 11 | metnrmlem1 | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑠 ∈ 𝑆 ) ) → if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) ≤ ( 𝑡 𝐷 𝑠 ) ) |
| 61 | 60 | ancom2s | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) ≤ ( 𝑡 𝐷 𝑠 ) ) |
| 62 | xmetsym | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑡 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑡 𝐷 𝑠 ) = ( 𝑠 𝐷 𝑡 ) ) | |
| 63 | 24 37 32 62 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( 𝑡 𝐷 𝑠 ) = ( 𝑠 𝐷 𝑡 ) ) |
| 64 | 61 63 | breqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) ≤ ( 𝑠 𝐷 𝑡 ) ) |
| 65 | 1 2 3 4 5 6 | metnrmlem1 | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ≤ ( 𝑠 𝐷 𝑡 ) ) |
| 66 | 40 | rpxrd | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) ∈ ℝ* ) |
| 67 | 45 | rpxrd | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ* ) |
| 68 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑠 ∈ 𝑋 ∧ 𝑡 ∈ 𝑋 ) → ( 𝑠 𝐷 𝑡 ) ∈ ℝ* ) | |
| 69 | 24 32 37 68 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( 𝑠 𝐷 𝑡 ) ∈ ℝ* ) |
| 70 | xle2add | ⊢ ( ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) ∈ ℝ* ∧ if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ* ) ∧ ( ( 𝑠 𝐷 𝑡 ) ∈ ℝ* ∧ ( 𝑠 𝐷 𝑡 ) ∈ ℝ* ) ) → ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) ≤ ( 𝑠 𝐷 𝑡 ) ∧ if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ≤ ( 𝑠 𝐷 𝑡 ) ) → ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) +𝑒 if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) ≤ ( ( 𝑠 𝐷 𝑡 ) +𝑒 ( 𝑠 𝐷 𝑡 ) ) ) ) | |
| 71 | 66 67 69 69 70 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) ≤ ( 𝑠 𝐷 𝑡 ) ∧ if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ≤ ( 𝑠 𝐷 𝑡 ) ) → ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) +𝑒 if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) ≤ ( ( 𝑠 𝐷 𝑡 ) +𝑒 ( 𝑠 𝐷 𝑡 ) ) ) ) |
| 72 | 64 65 71 | mp2and | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) +𝑒 if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) ≤ ( ( 𝑠 𝐷 𝑡 ) +𝑒 ( 𝑠 𝐷 𝑡 ) ) ) |
| 73 | 48 50 | readdcld | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ ) |
| 74 | 73 | recnd | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℂ ) |
| 75 | 74 55 57 | divcan2d | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( 2 · ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ) = ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 76 | 2re | ⊢ 2 ∈ ℝ | |
| 77 | 73 | rehalfcld | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ∈ ℝ ) |
| 78 | rexmul | ⊢ ( ( 2 ∈ ℝ ∧ ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ∈ ℝ ) → ( 2 ·e ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ) = ( 2 · ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ) ) | |
| 79 | 76 77 78 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( 2 ·e ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ) = ( 2 · ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ) ) |
| 80 | 48 50 | rexaddd | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) +𝑒 if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) = ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 81 | 75 79 80 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( 2 ·e ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ) = ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) +𝑒 if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 82 | x2times | ⊢ ( ( 𝑠 𝐷 𝑡 ) ∈ ℝ* → ( 2 ·e ( 𝑠 𝐷 𝑡 ) ) = ( ( 𝑠 𝐷 𝑡 ) +𝑒 ( 𝑠 𝐷 𝑡 ) ) ) | |
| 83 | 69 82 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( 2 ·e ( 𝑠 𝐷 𝑡 ) ) = ( ( 𝑠 𝐷 𝑡 ) +𝑒 ( 𝑠 𝐷 𝑡 ) ) ) |
| 84 | 72 81 83 | 3brtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( 2 ·e ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ) ≤ ( 2 ·e ( 𝑠 𝐷 𝑡 ) ) ) |
| 85 | 77 | rexrd | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ∈ ℝ* ) |
| 86 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 87 | 86 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → 2 ∈ ℝ+ ) |
| 88 | xlemul2 | ⊢ ( ( ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ∈ ℝ* ∧ ( 𝑠 𝐷 𝑡 ) ∈ ℝ* ∧ 2 ∈ ℝ+ ) → ( ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ≤ ( 𝑠 𝐷 𝑡 ) ↔ ( 2 ·e ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ) ≤ ( 2 ·e ( 𝑠 𝐷 𝑡 ) ) ) ) | |
| 89 | 85 69 87 88 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ≤ ( 𝑠 𝐷 𝑡 ) ↔ ( 2 ·e ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ) ≤ ( 2 ·e ( 𝑠 𝐷 𝑡 ) ) ) ) |
| 90 | 84 89 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ≤ ( 𝑠 𝐷 𝑡 ) ) |
| 91 | 59 90 | eqbrtrd | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) +𝑒 ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ≤ ( 𝑠 𝐷 𝑡 ) ) |
| 92 | bldisj | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑠 ∈ 𝑋 ∧ 𝑡 ∈ 𝑋 ) ∧ ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ∈ ℝ* ∧ ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ∈ ℝ* ∧ ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) +𝑒 ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ≤ ( 𝑠 𝐷 𝑡 ) ) ) → ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) = ∅ ) | |
| 93 | 24 32 37 42 47 91 92 | syl33anc | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) = ∅ ) |
| 94 | eqimss | ⊢ ( ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) = ∅ → ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) ⊆ ∅ ) | |
| 95 | 93 94 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) ⊆ ∅ ) |
| 96 | 95 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) ⊆ ∅ ) |
| 97 | 96 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ∀ 𝑡 ∈ 𝑇 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) ⊆ ∅ ) |
| 98 | iunss | ⊢ ( ∪ 𝑡 ∈ 𝑇 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) ⊆ ∅ ↔ ∀ 𝑡 ∈ 𝑇 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) ⊆ ∅ ) | |
| 99 | 97 98 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ∪ 𝑡 ∈ 𝑇 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) ⊆ ∅ ) |
| 100 | 23 99 | eqsstrid | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) ⊆ ∅ ) |
| 101 | 100 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) ⊆ ∅ ) |
| 102 | iunss | ⊢ ( ∪ 𝑠 ∈ 𝑆 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) ⊆ ∅ ↔ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) ⊆ ∅ ) | |
| 103 | 101 102 | sylibr | ⊢ ( 𝜑 → ∪ 𝑠 ∈ 𝑆 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) ⊆ ∅ ) |
| 104 | ss0 | ⊢ ( ∪ 𝑠 ∈ 𝑆 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) ⊆ ∅ → ∪ 𝑠 ∈ 𝑆 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) = ∅ ) | |
| 105 | 103 104 | syl | ⊢ ( 𝜑 → ∪ 𝑠 ∈ 𝑆 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) = ∅ ) |
| 106 | 20 105 | eqtrid | ⊢ ( 𝜑 → ( 𝑉 ∩ 𝑈 ) = ∅ ) |
| 107 | sseq2 | ⊢ ( 𝑧 = 𝑉 → ( 𝑆 ⊆ 𝑧 ↔ 𝑆 ⊆ 𝑉 ) ) | |
| 108 | ineq1 | ⊢ ( 𝑧 = 𝑉 → ( 𝑧 ∩ 𝑤 ) = ( 𝑉 ∩ 𝑤 ) ) | |
| 109 | 108 | eqeq1d | ⊢ ( 𝑧 = 𝑉 → ( ( 𝑧 ∩ 𝑤 ) = ∅ ↔ ( 𝑉 ∩ 𝑤 ) = ∅ ) ) |
| 110 | 107 109 | 3anbi13d | ⊢ ( 𝑧 = 𝑉 → ( ( 𝑆 ⊆ 𝑧 ∧ 𝑇 ⊆ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ↔ ( 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑤 ∧ ( 𝑉 ∩ 𝑤 ) = ∅ ) ) ) |
| 111 | sseq2 | ⊢ ( 𝑤 = 𝑈 → ( 𝑇 ⊆ 𝑤 ↔ 𝑇 ⊆ 𝑈 ) ) | |
| 112 | ineq2 | ⊢ ( 𝑤 = 𝑈 → ( 𝑉 ∩ 𝑤 ) = ( 𝑉 ∩ 𝑈 ) ) | |
| 113 | 112 | eqeq1d | ⊢ ( 𝑤 = 𝑈 → ( ( 𝑉 ∩ 𝑤 ) = ∅ ↔ ( 𝑉 ∩ 𝑈 ) = ∅ ) ) |
| 114 | 111 113 | 3anbi23d | ⊢ ( 𝑤 = 𝑈 → ( ( 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑤 ∧ ( 𝑉 ∩ 𝑤 ) = ∅ ) ↔ ( 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈 ∧ ( 𝑉 ∩ 𝑈 ) = ∅ ) ) ) |
| 115 | 110 114 | rspc2ev | ⊢ ( ( 𝑉 ∈ 𝐽 ∧ 𝑈 ∈ 𝐽 ∧ ( 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈 ∧ ( 𝑉 ∩ 𝑈 ) = ∅ ) ) → ∃ 𝑧 ∈ 𝐽 ∃ 𝑤 ∈ 𝐽 ( 𝑆 ⊆ 𝑧 ∧ 𝑇 ⊆ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| 116 | 13 15 16 17 106 115 | syl113anc | ⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝐽 ∃ 𝑤 ∈ 𝐽 ( 𝑆 ⊆ 𝑧 ∧ 𝑇 ⊆ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |