This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for metnrm . (Contributed by Mario Carneiro, 14-Jan-2014) (Revised by Mario Carneiro, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metdscn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) | |
| metdscn.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| metnrmlem.1 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | ||
| metnrmlem.2 | ⊢ ( 𝜑 → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) | ||
| metnrmlem.3 | ⊢ ( 𝜑 → 𝑇 ∈ ( Clsd ‘ 𝐽 ) ) | ||
| metnrmlem.4 | ⊢ ( 𝜑 → ( 𝑆 ∩ 𝑇 ) = ∅ ) | ||
| metnrmlem.u | ⊢ 𝑈 = ∪ 𝑡 ∈ 𝑇 ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) | ||
| Assertion | metnrmlem2 | ⊢ ( 𝜑 → ( 𝑈 ∈ 𝐽 ∧ 𝑇 ⊆ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metdscn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) | |
| 2 | metdscn.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 3 | metnrmlem.1 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 4 | metnrmlem.2 | ⊢ ( 𝜑 → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 5 | metnrmlem.3 | ⊢ ( 𝜑 → 𝑇 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 6 | metnrmlem.4 | ⊢ ( 𝜑 → ( 𝑆 ∩ 𝑇 ) = ∅ ) | |
| 7 | metnrmlem.u | ⊢ 𝑈 = ∪ 𝑡 ∈ 𝑇 ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) | |
| 8 | 2 | mopntop | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 9 | 3 8 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 10 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 11 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 12 | 11 | cldss | ⊢ ( 𝑇 ∈ ( Clsd ‘ 𝐽 ) → 𝑇 ⊆ ∪ 𝐽 ) |
| 13 | 5 12 | syl | ⊢ ( 𝜑 → 𝑇 ⊆ ∪ 𝐽 ) |
| 14 | 2 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 15 | 3 14 | syl | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 16 | 13 15 | sseqtrrd | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑋 ) |
| 17 | 16 | sselda | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑋 ) |
| 18 | 1 2 3 4 5 6 | metnrmlem1a | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 0 < ( 𝐹 ‘ 𝑡 ) ∧ if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ+ ) ) |
| 19 | 18 | simprd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ+ ) |
| 20 | 19 | rphalfcld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ∈ ℝ+ ) |
| 21 | 20 | rpxrd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ∈ ℝ* ) |
| 22 | 2 | blopn | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑡 ∈ 𝑋 ∧ ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ∈ ℝ* ) → ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ∈ 𝐽 ) |
| 23 | 10 17 21 22 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ∈ 𝐽 ) |
| 24 | 23 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑇 ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ∈ 𝐽 ) |
| 25 | iunopn | ⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑡 ∈ 𝑇 ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ∈ 𝐽 ) → ∪ 𝑡 ∈ 𝑇 ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ∈ 𝐽 ) | |
| 26 | 9 24 25 | syl2anc | ⊢ ( 𝜑 → ∪ 𝑡 ∈ 𝑇 ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ∈ 𝐽 ) |
| 27 | 7 26 | eqeltrid | ⊢ ( 𝜑 → 𝑈 ∈ 𝐽 ) |
| 28 | blcntr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑡 ∈ 𝑋 ∧ ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ∈ ℝ+ ) → 𝑡 ∈ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) | |
| 29 | 10 17 20 28 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) |
| 30 | 29 | snssd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → { 𝑡 } ⊆ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) |
| 31 | 30 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑇 { 𝑡 } ⊆ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) |
| 32 | ss2iun | ⊢ ( ∀ 𝑡 ∈ 𝑇 { 𝑡 } ⊆ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) → ∪ 𝑡 ∈ 𝑇 { 𝑡 } ⊆ ∪ 𝑡 ∈ 𝑇 ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) | |
| 33 | 31 32 | syl | ⊢ ( 𝜑 → ∪ 𝑡 ∈ 𝑇 { 𝑡 } ⊆ ∪ 𝑡 ∈ 𝑇 ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) |
| 34 | iunid | ⊢ ∪ 𝑡 ∈ 𝑇 { 𝑡 } = 𝑇 | |
| 35 | 34 | eqcomi | ⊢ 𝑇 = ∪ 𝑡 ∈ 𝑇 { 𝑡 } |
| 36 | 33 35 7 | 3sstr4g | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑈 ) |
| 37 | 27 36 | jca | ⊢ ( 𝜑 → ( 𝑈 ∈ 𝐽 ∧ 𝑇 ⊆ 𝑈 ) ) |