This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for metnrm . (Contributed by Mario Carneiro, 14-Jan-2014) (Revised by Mario Carneiro, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metdscn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) | |
| metdscn.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| metnrmlem.1 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | ||
| metnrmlem.2 | ⊢ ( 𝜑 → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) | ||
| metnrmlem.3 | ⊢ ( 𝜑 → 𝑇 ∈ ( Clsd ‘ 𝐽 ) ) | ||
| metnrmlem.4 | ⊢ ( 𝜑 → ( 𝑆 ∩ 𝑇 ) = ∅ ) | ||
| Assertion | metnrmlem1 | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐹 ‘ 𝐵 ) , 1 , ( 𝐹 ‘ 𝐵 ) ) ≤ ( 𝐴 𝐷 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metdscn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) | |
| 2 | metdscn.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 3 | metnrmlem.1 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 4 | metnrmlem.2 | ⊢ ( 𝜑 → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 5 | metnrmlem.3 | ⊢ ( 𝜑 → 𝑇 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 6 | metnrmlem.4 | ⊢ ( 𝜑 → ( 𝑆 ∩ 𝑇 ) = ∅ ) | |
| 7 | 1xr | ⊢ 1 ∈ ℝ* | |
| 8 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 9 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) |
| 10 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 11 | 10 | cldss | ⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 12 | 9 11 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 13 | 2 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 14 | 8 13 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → 𝑋 = ∪ 𝐽 ) |
| 15 | 12 14 | sseqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → 𝑆 ⊆ 𝑋 ) |
| 16 | 1 | metdsf | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 17 | 8 15 16 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 18 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → 𝑇 ∈ ( Clsd ‘ 𝐽 ) ) |
| 19 | 10 | cldss | ⊢ ( 𝑇 ∈ ( Clsd ‘ 𝐽 ) → 𝑇 ⊆ ∪ 𝐽 ) |
| 20 | 18 19 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → 𝑇 ⊆ ∪ 𝐽 ) |
| 21 | 20 14 | sseqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → 𝑇 ⊆ 𝑋 ) |
| 22 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → 𝐵 ∈ 𝑇 ) | |
| 23 | 21 22 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → 𝐵 ∈ 𝑋 ) |
| 24 | 17 23 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
| 25 | eliccxr | ⊢ ( ( 𝐹 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) → ( 𝐹 ‘ 𝐵 ) ∈ ℝ* ) | |
| 26 | 24 25 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝐵 ) ∈ ℝ* ) |
| 27 | ifcl | ⊢ ( ( 1 ∈ ℝ* ∧ ( 𝐹 ‘ 𝐵 ) ∈ ℝ* ) → if ( 1 ≤ ( 𝐹 ‘ 𝐵 ) , 1 , ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ* ) | |
| 28 | 7 26 27 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐹 ‘ 𝐵 ) , 1 , ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ* ) |
| 29 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → 𝐴 ∈ 𝑆 ) | |
| 30 | 15 29 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → 𝐴 ∈ 𝑋 ) |
| 31 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ) | |
| 32 | 8 30 23 31 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ) |
| 33 | xrmin2 | ⊢ ( ( 1 ∈ ℝ* ∧ ( 𝐹 ‘ 𝐵 ) ∈ ℝ* ) → if ( 1 ≤ ( 𝐹 ‘ 𝐵 ) , 1 , ( 𝐹 ‘ 𝐵 ) ) ≤ ( 𝐹 ‘ 𝐵 ) ) | |
| 34 | 7 26 33 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐹 ‘ 𝐵 ) , 1 , ( 𝐹 ‘ 𝐵 ) ) ≤ ( 𝐹 ‘ 𝐵 ) ) |
| 35 | 1 | metdstri | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝐵 ) ≤ ( ( 𝐵 𝐷 𝐴 ) +𝑒 ( 𝐹 ‘ 𝐴 ) ) ) |
| 36 | 8 15 23 30 35 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝐵 ) ≤ ( ( 𝐵 𝐷 𝐴 ) +𝑒 ( 𝐹 ‘ 𝐴 ) ) ) |
| 37 | xmetsym | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐴 ) = ( 𝐴 𝐷 𝐵 ) ) | |
| 38 | 8 23 30 37 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → ( 𝐵 𝐷 𝐴 ) = ( 𝐴 𝐷 𝐵 ) ) |
| 39 | 1 | metds0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ( 𝐹 ‘ 𝐴 ) = 0 ) |
| 40 | 8 15 29 39 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝐴 ) = 0 ) |
| 41 | 38 40 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → ( ( 𝐵 𝐷 𝐴 ) +𝑒 ( 𝐹 ‘ 𝐴 ) ) = ( ( 𝐴 𝐷 𝐵 ) +𝑒 0 ) ) |
| 42 | 32 | xaddridd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → ( ( 𝐴 𝐷 𝐵 ) +𝑒 0 ) = ( 𝐴 𝐷 𝐵 ) ) |
| 43 | 41 42 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → ( ( 𝐵 𝐷 𝐴 ) +𝑒 ( 𝐹 ‘ 𝐴 ) ) = ( 𝐴 𝐷 𝐵 ) ) |
| 44 | 36 43 | breqtrd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝐵 ) ≤ ( 𝐴 𝐷 𝐵 ) ) |
| 45 | 28 26 32 34 44 | xrletrd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐹 ‘ 𝐵 ) , 1 , ( 𝐹 ‘ 𝐵 ) ) ≤ ( 𝐴 𝐷 𝐵 ) ) |