This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of 2times . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | x2times | ⊢ ( 𝐴 ∈ ℝ* → ( 2 ·e 𝐴 ) = ( 𝐴 +𝑒 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 2 | 1re | ⊢ 1 ∈ ℝ | |
| 3 | rexadd | ⊢ ( ( 1 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 1 +𝑒 1 ) = ( 1 + 1 ) ) | |
| 4 | 2 2 3 | mp2an | ⊢ ( 1 +𝑒 1 ) = ( 1 + 1 ) |
| 5 | 1 4 | eqtr4i | ⊢ 2 = ( 1 +𝑒 1 ) |
| 6 | 5 | oveq1i | ⊢ ( 2 ·e 𝐴 ) = ( ( 1 +𝑒 1 ) ·e 𝐴 ) |
| 7 | 1xr | ⊢ 1 ∈ ℝ* | |
| 8 | 0le1 | ⊢ 0 ≤ 1 | |
| 9 | 7 8 | pm3.2i | ⊢ ( 1 ∈ ℝ* ∧ 0 ≤ 1 ) |
| 10 | xadddi2r | ⊢ ( ( ( 1 ∈ ℝ* ∧ 0 ≤ 1 ) ∧ ( 1 ∈ ℝ* ∧ 0 ≤ 1 ) ∧ 𝐴 ∈ ℝ* ) → ( ( 1 +𝑒 1 ) ·e 𝐴 ) = ( ( 1 ·e 𝐴 ) +𝑒 ( 1 ·e 𝐴 ) ) ) | |
| 11 | 9 9 10 | mp3an12 | ⊢ ( 𝐴 ∈ ℝ* → ( ( 1 +𝑒 1 ) ·e 𝐴 ) = ( ( 1 ·e 𝐴 ) +𝑒 ( 1 ·e 𝐴 ) ) ) |
| 12 | xmullid | ⊢ ( 𝐴 ∈ ℝ* → ( 1 ·e 𝐴 ) = 𝐴 ) | |
| 13 | 12 12 | oveq12d | ⊢ ( 𝐴 ∈ ℝ* → ( ( 1 ·e 𝐴 ) +𝑒 ( 1 ·e 𝐴 ) ) = ( 𝐴 +𝑒 𝐴 ) ) |
| 14 | 11 13 | eqtrd | ⊢ ( 𝐴 ∈ ℝ* → ( ( 1 +𝑒 1 ) ·e 𝐴 ) = ( 𝐴 +𝑒 𝐴 ) ) |
| 15 | 6 14 | eqtrid | ⊢ ( 𝐴 ∈ ℝ* → ( 2 ·e 𝐴 ) = ( 𝐴 +𝑒 𝐴 ) ) |