This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A metric space is normal. (Contributed by Jeff Hankins, 31-Aug-2013) (Revised by Mario Carneiro, 5-Sep-2015) (Proof shortened by AV, 30-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metnrm.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | metnrm | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Nrm ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metnrm.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | 1 | mopntop | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 3 | eqid | ⊢ ( 𝑢 ∈ 𝑋 ↦ inf ( ran ( 𝑣 ∈ 𝑥 ↦ ( 𝑢 𝐷 𝑣 ) ) , ℝ* , < ) ) = ( 𝑢 ∈ 𝑋 ↦ inf ( ran ( 𝑣 ∈ 𝑥 ↦ ( 𝑢 𝐷 𝑣 ) ) , ℝ* , < ) ) | |
| 4 | simp1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑦 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 5 | simp2l | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑦 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 6 | simp2r | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑦 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → 𝑦 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 7 | simp3 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑦 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∩ 𝑦 ) = ∅ ) | |
| 8 | eqid | ⊢ ∪ 𝑠 ∈ 𝑦 ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( ( 𝑢 ∈ 𝑋 ↦ inf ( ran ( 𝑣 ∈ 𝑥 ↦ ( 𝑢 𝐷 𝑣 ) ) , ℝ* , < ) ) ‘ 𝑠 ) , 1 , ( ( 𝑢 ∈ 𝑋 ↦ inf ( ran ( 𝑣 ∈ 𝑥 ↦ ( 𝑢 𝐷 𝑣 ) ) , ℝ* , < ) ) ‘ 𝑠 ) ) / 2 ) ) = ∪ 𝑠 ∈ 𝑦 ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( ( 𝑢 ∈ 𝑋 ↦ inf ( ran ( 𝑣 ∈ 𝑥 ↦ ( 𝑢 𝐷 𝑣 ) ) , ℝ* , < ) ) ‘ 𝑠 ) , 1 , ( ( 𝑢 ∈ 𝑋 ↦ inf ( ran ( 𝑣 ∈ 𝑥 ↦ ( 𝑢 𝐷 𝑣 ) ) , ℝ* , < ) ) ‘ 𝑠 ) ) / 2 ) ) | |
| 9 | eqid | ⊢ ( 𝑢 ∈ 𝑋 ↦ inf ( ran ( 𝑣 ∈ 𝑦 ↦ ( 𝑢 𝐷 𝑣 ) ) , ℝ* , < ) ) = ( 𝑢 ∈ 𝑋 ↦ inf ( ran ( 𝑣 ∈ 𝑦 ↦ ( 𝑢 𝐷 𝑣 ) ) , ℝ* , < ) ) | |
| 10 | eqid | ⊢ ∪ 𝑡 ∈ 𝑥 ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( ( 𝑢 ∈ 𝑋 ↦ inf ( ran ( 𝑣 ∈ 𝑦 ↦ ( 𝑢 𝐷 𝑣 ) ) , ℝ* , < ) ) ‘ 𝑡 ) , 1 , ( ( 𝑢 ∈ 𝑋 ↦ inf ( ran ( 𝑣 ∈ 𝑦 ↦ ( 𝑢 𝐷 𝑣 ) ) , ℝ* , < ) ) ‘ 𝑡 ) ) / 2 ) ) = ∪ 𝑡 ∈ 𝑥 ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( ( 𝑢 ∈ 𝑋 ↦ inf ( ran ( 𝑣 ∈ 𝑦 ↦ ( 𝑢 𝐷 𝑣 ) ) , ℝ* , < ) ) ‘ 𝑡 ) , 1 , ( ( 𝑢 ∈ 𝑋 ↦ inf ( ran ( 𝑣 ∈ 𝑦 ↦ ( 𝑢 𝐷 𝑣 ) ) , ℝ* , < ) ) ‘ 𝑡 ) ) / 2 ) ) | |
| 11 | 3 1 4 5 6 7 8 9 10 | metnrmlem3 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑦 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ∃ 𝑧 ∈ 𝐽 ∃ 𝑤 ∈ 𝐽 ( 𝑥 ⊆ 𝑧 ∧ 𝑦 ⊆ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| 12 | 11 | 3expia | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑦 ∈ ( Clsd ‘ 𝐽 ) ) ) → ( ( 𝑥 ∩ 𝑦 ) = ∅ → ∃ 𝑧 ∈ 𝐽 ∃ 𝑤 ∈ 𝐽 ( 𝑥 ⊆ 𝑧 ∧ 𝑦 ⊆ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 13 | 12 | ralrimivva | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∀ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑦 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑥 ∩ 𝑦 ) = ∅ → ∃ 𝑧 ∈ 𝐽 ∃ 𝑤 ∈ 𝐽 ( 𝑥 ⊆ 𝑧 ∧ 𝑦 ⊆ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 14 | isnrm3 | ⊢ ( 𝐽 ∈ Nrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑦 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑥 ∩ 𝑦 ) = ∅ → ∃ 𝑧 ∈ 𝐽 ∃ 𝑤 ∈ 𝐽 ( 𝑥 ⊆ 𝑧 ∧ 𝑦 ⊆ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) ) | |
| 15 | 2 13 14 | sylanbrc | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Nrm ) |