This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of lemul2 . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xlemul2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐶 ·e 𝐴 ) ≤ ( 𝐶 ·e 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xlemul1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) | |
| 2 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → 𝐴 ∈ ℝ* ) | |
| 3 | rpxr | ⊢ ( 𝐶 ∈ ℝ+ → 𝐶 ∈ ℝ* ) | |
| 4 | 3 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ∈ ℝ* ) |
| 5 | xmulcom | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ·e 𝐶 ) = ( 𝐶 ·e 𝐴 ) ) | |
| 6 | 2 4 5 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ·e 𝐶 ) = ( 𝐶 ·e 𝐴 ) ) |
| 7 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → 𝐵 ∈ ℝ* ) | |
| 8 | xmulcom | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) = ( 𝐶 ·e 𝐵 ) ) | |
| 9 | 7 4 8 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐵 ·e 𝐶 ) = ( 𝐶 ·e 𝐵 ) ) |
| 10 | 6 9 | breq12d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ↔ ( 𝐶 ·e 𝐴 ) ≤ ( 𝐶 ·e 𝐵 ) ) ) |
| 11 | 1 10 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐶 ·e 𝐴 ) ≤ ( 𝐶 ·e 𝐵 ) ) ) |