This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two sequences converge to each other, they converge to the same limit. (Contributed by NM, 24-Dec-2005) (Proof shortened by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2clim.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2clim.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| 2clim.3 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | ||
| 2clim.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) | ||
| 2clim.6 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < 𝑥 ) | ||
| 2clim.7 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | ||
| Assertion | 2clim | ⊢ ( 𝜑 → 𝐺 ⇝ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2clim.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | 2clim.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | 2clim.3 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | |
| 4 | 2clim.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) | |
| 5 | 2clim.6 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < 𝑥 ) | |
| 6 | 2clim.7 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | |
| 7 | rphalfcl | ⊢ ( 𝑦 ∈ ℝ+ → ( 𝑦 / 2 ) ∈ ℝ+ ) | |
| 8 | breq2 | ⊢ ( 𝑥 = ( 𝑦 / 2 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < ( 𝑦 / 2 ) ) ) | |
| 9 | 8 | rexralbidv | ⊢ ( 𝑥 = ( 𝑦 / 2 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < ( 𝑦 / 2 ) ) ) |
| 10 | 9 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < 𝑥 ∧ ( 𝑦 / 2 ) ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < ( 𝑦 / 2 ) ) |
| 11 | 5 7 10 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < ( 𝑦 / 2 ) ) |
| 12 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝑀 ∈ ℤ ) |
| 13 | 7 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( 𝑦 / 2 ) ∈ ℝ+ ) |
| 14 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 15 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐹 ⇝ 𝐴 ) |
| 16 | 1 12 13 14 15 | climi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( 𝑦 / 2 ) ) ) |
| 17 | 1 | rexanuz2 | ⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < ( 𝑦 / 2 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( 𝑦 / 2 ) ) ) ↔ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < ( 𝑦 / 2 ) ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( 𝑦 / 2 ) ) ) ) |
| 18 | 11 16 17 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < ( 𝑦 / 2 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( 𝑦 / 2 ) ) ) ) |
| 19 | 1 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 20 | an12 | ⊢ ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < ( 𝑦 / 2 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( 𝑦 / 2 ) ) ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < ( 𝑦 / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( 𝑦 / 2 ) ) ) ) | |
| 21 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 22 | 4 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 23 | 21 22 | abssubd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 24 | 23 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < ( 𝑦 / 2 ) ↔ ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ) < ( 𝑦 / 2 ) ) ) |
| 25 | 24 | anbi1d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < ( 𝑦 / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( 𝑦 / 2 ) ) ↔ ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ) < ( 𝑦 / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( 𝑦 / 2 ) ) ) ) |
| 26 | climcl | ⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ ) | |
| 27 | 6 26 | syl | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 28 | 27 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) → 𝐴 ∈ ℂ ) |
| 29 | rpre | ⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ ) | |
| 30 | 29 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) → 𝑦 ∈ ℝ ) |
| 31 | abs3lem | ⊢ ( ( ( ( 𝐺 ‘ 𝑘 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ 𝑦 ∈ ℝ ) ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ) < ( 𝑦 / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( 𝑦 / 2 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) | |
| 32 | 22 28 21 30 31 | syl22anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ) < ( 𝑦 / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( 𝑦 / 2 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) |
| 33 | 25 32 | sylbid | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < ( 𝑦 / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( 𝑦 / 2 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) |
| 34 | 33 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < ( 𝑦 / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( 𝑦 / 2 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) |
| 35 | 34 | expimpd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < ( 𝑦 / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( 𝑦 / 2 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) |
| 36 | 20 35 | biimtrid | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < ( 𝑦 / 2 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( 𝑦 / 2 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) |
| 37 | 19 36 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < ( 𝑦 / 2 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( 𝑦 / 2 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) |
| 38 | 37 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < ( 𝑦 / 2 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( 𝑦 / 2 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) |
| 39 | 38 | ralimdva | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < ( 𝑦 / 2 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( 𝑦 / 2 ) ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) |
| 40 | 39 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < ( 𝑦 / 2 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( 𝑦 / 2 ) ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) |
| 41 | 18 40 | mpd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) |
| 42 | 41 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) |
| 43 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 44 | 1 2 3 43 27 4 | clim2c | ⊢ ( 𝜑 → ( 𝐺 ⇝ 𝐴 ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) |
| 45 | 42 44 | mpbird | ⊢ ( 𝜑 → 𝐺 ⇝ 𝐴 ) |