This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a sequence of measurable, real-valued functions is measurable. Note that in this and related theorems, B ( n , x ) is a function of both n and x , since it is an n -indexed sequence of functions on x . (Contributed by Mario Carneiro, 14-Aug-2014) (Revised by Mario Carneiro, 7-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfsup.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| mbfsup.2 | ⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) ) | ||
| mbfsup.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| mbfsup.4 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | ||
| mbfsup.5 | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) ) → 𝐵 ∈ ℝ ) | ||
| mbfsup.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝐵 ≤ 𝑦 ) | ||
| Assertion | mbfsup | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfsup.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | mbfsup.2 | ⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) ) | |
| 3 | mbfsup.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | mbfsup.4 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | |
| 5 | mbfsup.5 | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) ) → 𝐵 ∈ ℝ ) | |
| 6 | mbfsup.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝐵 ≤ 𝑦 ) | |
| 7 | 5 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 8 | 7 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
| 9 | 8 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ ) |
| 10 | 9 | frnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⊆ ℝ ) |
| 11 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 12 | 3 11 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 13 | 12 1 | eleqtrrdi | ⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ∈ 𝑍 ) |
| 15 | eqid | ⊢ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) = ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) | |
| 16 | 15 8 | dmmptd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → dom ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) = 𝑍 ) |
| 17 | 14 16 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ∈ dom ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) |
| 18 | 17 | ne0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → dom ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ≠ ∅ ) |
| 19 | dm0rn0 | ⊢ ( dom ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) = ∅ ↔ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) = ∅ ) | |
| 20 | 19 | necon3bii | ⊢ ( dom ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ≠ ∅ ↔ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ≠ ∅ ) |
| 21 | 18 20 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ≠ ∅ ) |
| 22 | 9 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) Fn 𝑍 ) |
| 23 | breq1 | ⊢ ( 𝑧 = ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) → ( 𝑧 ≤ 𝑦 ↔ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ≤ 𝑦 ) ) | |
| 24 | 23 | ralrn | ⊢ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) Fn 𝑍 → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ↔ ∀ 𝑚 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ≤ 𝑦 ) ) |
| 25 | 22 24 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ↔ ∀ 𝑚 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ≤ 𝑦 ) ) |
| 26 | nffvmpt1 | ⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) | |
| 27 | nfcv | ⊢ Ⅎ 𝑛 ≤ | |
| 28 | nfcv | ⊢ Ⅎ 𝑛 𝑦 | |
| 29 | 26 27 28 | nfbr | ⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ≤ 𝑦 |
| 30 | nfv | ⊢ Ⅎ 𝑚 ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ≤ 𝑦 | |
| 31 | fveq2 | ⊢ ( 𝑚 = 𝑛 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) = ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) | |
| 32 | 31 | breq1d | ⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ≤ 𝑦 ↔ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ≤ 𝑦 ) ) |
| 33 | 29 30 32 | cbvralw | ⊢ ( ∀ 𝑚 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ≤ 𝑦 ↔ ∀ 𝑛 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ≤ 𝑦 ) |
| 34 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) | |
| 35 | 15 | fvmpt2 | ⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝐵 ∈ ℝ ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = 𝐵 ) |
| 36 | 34 8 35 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = 𝐵 ) |
| 37 | 36 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ≤ 𝑦 ↔ 𝐵 ≤ 𝑦 ) ) |
| 38 | 37 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑛 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ≤ 𝑦 ↔ ∀ 𝑛 ∈ 𝑍 𝐵 ≤ 𝑦 ) ) |
| 39 | 33 38 | bitrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑚 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ≤ 𝑦 ↔ ∀ 𝑛 ∈ 𝑍 𝐵 ≤ 𝑦 ) ) |
| 40 | 25 39 | bitrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ↔ ∀ 𝑛 ∈ 𝑍 𝐵 ≤ 𝑦 ) ) |
| 41 | 40 | rexbidv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝐵 ≤ 𝑦 ) ) |
| 42 | 6 41 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) |
| 43 | 10 21 42 | suprcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → sup ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) ∈ ℝ ) |
| 44 | 43 2 | fmptd | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ ℝ ) |
| 45 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 46 | ltso | ⊢ < Or ℝ | |
| 47 | 46 | supex | ⊢ sup ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) ∈ V |
| 48 | 2 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ sup ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) ∈ V ) → ( 𝐺 ‘ 𝑥 ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) ) |
| 49 | 45 47 48 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) ) |
| 50 | 49 | breq2d | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑡 < ( 𝐺 ‘ 𝑥 ) ↔ 𝑡 < sup ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) ) ) |
| 51 | 10 21 42 | 3jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⊆ ℝ ∧ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ) |
| 52 | 51 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⊆ ℝ ∧ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ) |
| 53 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑡 ∈ ℝ ) | |
| 54 | suprlub | ⊢ ( ( ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⊆ ℝ ∧ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ∧ 𝑡 ∈ ℝ ) → ( 𝑡 < sup ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) ↔ ∃ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑡 < 𝑧 ) ) | |
| 55 | 52 53 54 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑡 < sup ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) ↔ ∃ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑡 < 𝑧 ) ) |
| 56 | 22 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) Fn 𝑍 ) |
| 57 | breq2 | ⊢ ( 𝑧 = ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) → ( 𝑡 < 𝑧 ↔ 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ) ) | |
| 58 | 57 | rexrn | ⊢ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) Fn 𝑍 → ( ∃ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑡 < 𝑧 ↔ ∃ 𝑚 ∈ 𝑍 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ) ) |
| 59 | 56 58 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑡 < 𝑧 ↔ ∃ 𝑚 ∈ 𝑍 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ) ) |
| 60 | nfcv | ⊢ Ⅎ 𝑛 𝑡 | |
| 61 | nfcv | ⊢ Ⅎ 𝑛 < | |
| 62 | 60 61 26 | nfbr | ⊢ Ⅎ 𝑛 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) |
| 63 | nfv | ⊢ Ⅎ 𝑚 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) | |
| 64 | 31 | breq2d | ⊢ ( 𝑚 = 𝑛 → ( 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ↔ 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) ) |
| 65 | 62 63 64 | cbvrexw | ⊢ ( ∃ 𝑚 ∈ 𝑍 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) |
| 66 | 15 | fvmpt2i | ⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = ( I ‘ 𝐵 ) ) |
| 67 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 68 | 67 | fvmpt2i | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = ( I ‘ 𝐵 ) ) |
| 69 | 68 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = ( I ‘ 𝐵 ) ) |
| 70 | 69 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( I ‘ 𝐵 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
| 71 | 66 70 | sylan9eqr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
| 72 | 71 | breq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ↔ 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) |
| 73 | 72 | rexbidva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) |
| 74 | 73 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) |
| 75 | 65 74 | bitrid | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑚 ∈ 𝑍 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) |
| 76 | 59 75 | bitrd | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑡 < 𝑧 ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) |
| 77 | 50 55 76 | 3bitrd | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑡 < ( 𝐺 ‘ 𝑥 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) |
| 78 | 77 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ∀ 𝑥 ∈ 𝐴 ( 𝑡 < ( 𝐺 ‘ 𝑥 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) |
| 79 | nfv | ⊢ Ⅎ 𝑧 ( 𝑡 < ( 𝐺 ‘ 𝑥 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) | |
| 80 | nfcv | ⊢ Ⅎ 𝑥 𝑡 | |
| 81 | nfcv | ⊢ Ⅎ 𝑥 < | |
| 82 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) ) | |
| 83 | 2 82 | nfcxfr | ⊢ Ⅎ 𝑥 𝐺 |
| 84 | nfcv | ⊢ Ⅎ 𝑥 𝑧 | |
| 85 | 83 84 | nffv | ⊢ Ⅎ 𝑥 ( 𝐺 ‘ 𝑧 ) |
| 86 | 80 81 85 | nfbr | ⊢ Ⅎ 𝑥 𝑡 < ( 𝐺 ‘ 𝑧 ) |
| 87 | nfcv | ⊢ Ⅎ 𝑥 𝑍 | |
| 88 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) | |
| 89 | 80 81 88 | nfbr | ⊢ Ⅎ 𝑥 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) |
| 90 | 87 89 | nfrexw | ⊢ Ⅎ 𝑥 ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) |
| 91 | 86 90 | nfbi | ⊢ Ⅎ 𝑥 ( 𝑡 < ( 𝐺 ‘ 𝑧 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) |
| 92 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 93 | 92 | breq2d | ⊢ ( 𝑥 = 𝑧 → ( 𝑡 < ( 𝐺 ‘ 𝑥 ) ↔ 𝑡 < ( 𝐺 ‘ 𝑧 ) ) ) |
| 94 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) | |
| 95 | 94 | breq2d | ⊢ ( 𝑥 = 𝑧 → ( 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) |
| 96 | 95 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) |
| 97 | 93 96 | bibi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑡 < ( 𝐺 ‘ 𝑥 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ↔ ( 𝑡 < ( 𝐺 ‘ 𝑧 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) ) |
| 98 | 79 91 97 | cbvralw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑡 < ( 𝐺 ‘ 𝑥 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑡 < ( 𝐺 ‘ 𝑧 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) |
| 99 | 78 98 | sylib | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ∀ 𝑧 ∈ 𝐴 ( 𝑡 < ( 𝐺 ‘ 𝑧 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) |
| 100 | 99 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑡 < ( 𝐺 ‘ 𝑧 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) |
| 101 | 44 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → 𝐺 : 𝐴 ⟶ ℝ ) |
| 102 | 101 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑧 ) ∈ ℝ ) |
| 103 | rexr | ⊢ ( 𝑡 ∈ ℝ → 𝑡 ∈ ℝ* ) | |
| 104 | 103 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → 𝑡 ∈ ℝ* ) |
| 105 | elioopnf | ⊢ ( 𝑡 ∈ ℝ* → ( ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ↔ ( ( 𝐺 ‘ 𝑧 ) ∈ ℝ ∧ 𝑡 < ( 𝐺 ‘ 𝑧 ) ) ) ) | |
| 106 | 104 105 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ↔ ( ( 𝐺 ‘ 𝑧 ) ∈ ℝ ∧ 𝑡 < ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 107 | 102 106 | mpbirand | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ↔ 𝑡 < ( 𝐺 ‘ 𝑧 ) ) ) |
| 108 | 104 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑡 ∈ ℝ* ) |
| 109 | elioopnf | ⊢ ( 𝑡 ∈ ℝ* → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ↔ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) ) | |
| 110 | 108 109 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ↔ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) ) |
| 111 | 7 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) |
| 112 | 111 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ℝ ) |
| 113 | 112 | biantrurd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ↔ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) ) |
| 114 | 113 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ↔ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) ) |
| 115 | 114 | adantllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ↔ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) ) |
| 116 | 110 115 | bitr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ↔ 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) |
| 117 | 116 | rexbidva | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ∃ 𝑛 ∈ 𝑍 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) |
| 118 | 100 107 117 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ↔ ∃ 𝑛 ∈ 𝑍 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ) |
| 119 | 118 | pm5.32da | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( ( 𝑧 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ∃ 𝑛 ∈ 𝑍 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ) ) |
| 120 | 44 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
| 121 | 120 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → 𝐺 Fn 𝐴 ) |
| 122 | elpreima | ⊢ ( 𝐺 Fn 𝐴 → ( 𝑧 ∈ ( ◡ 𝐺 “ ( 𝑡 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ) ) | |
| 123 | 121 122 | syl | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ 𝐺 “ ( 𝑡 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ) ) |
| 124 | eliun | ⊢ ( 𝑧 ∈ ∪ 𝑛 ∈ 𝑍 ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ↔ ∃ 𝑛 ∈ 𝑍 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ) | |
| 125 | 111 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
| 126 | elpreima | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 → ( 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ) ) | |
| 127 | 125 126 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ) ) |
| 128 | 127 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑛 ∈ 𝑍 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ↔ ∃ 𝑛 ∈ 𝑍 ( 𝑧 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ) ) |
| 129 | 128 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( ∃ 𝑛 ∈ 𝑍 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ↔ ∃ 𝑛 ∈ 𝑍 ( 𝑧 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ) ) |
| 130 | r19.42v | ⊢ ( ∃ 𝑛 ∈ 𝑍 ( 𝑧 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ∃ 𝑛 ∈ 𝑍 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ) | |
| 131 | 129 130 | bitrdi | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( ∃ 𝑛 ∈ 𝑍 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ∃ 𝑛 ∈ 𝑍 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ) ) |
| 132 | 124 131 | bitrid | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( 𝑧 ∈ ∪ 𝑛 ∈ 𝑍 ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ∃ 𝑛 ∈ 𝑍 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ) ) |
| 133 | 119 123 132 | 3bitr4d | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ 𝐺 “ ( 𝑡 (,) +∞ ) ) ↔ 𝑧 ∈ ∪ 𝑛 ∈ 𝑍 ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ) ) |
| 134 | 133 | eqrdv | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( ◡ 𝐺 “ ( 𝑡 (,) +∞ ) ) = ∪ 𝑛 ∈ 𝑍 ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ) |
| 135 | zex | ⊢ ℤ ∈ V | |
| 136 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 137 | ssdomg | ⊢ ( ℤ ∈ V → ( ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ → ( ℤ≥ ‘ 𝑀 ) ≼ ℤ ) ) | |
| 138 | 135 136 137 | mp2 | ⊢ ( ℤ≥ ‘ 𝑀 ) ≼ ℤ |
| 139 | 1 138 | eqbrtri | ⊢ 𝑍 ≼ ℤ |
| 140 | znnen | ⊢ ℤ ≈ ℕ | |
| 141 | domentr | ⊢ ( ( 𝑍 ≼ ℤ ∧ ℤ ≈ ℕ ) → 𝑍 ≼ ℕ ) | |
| 142 | 139 140 141 | mp2an | ⊢ 𝑍 ≼ ℕ |
| 143 | mbfima | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ∈ dom vol ) | |
| 144 | 4 111 143 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ∈ dom vol ) |
| 145 | 144 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ∈ dom vol ) |
| 146 | 145 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ∈ dom vol ) |
| 147 | iunmbl2 | ⊢ ( ( 𝑍 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ∈ dom vol ) → ∪ 𝑛 ∈ 𝑍 ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ∈ dom vol ) | |
| 148 | 142 146 147 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ∪ 𝑛 ∈ 𝑍 ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ∈ dom vol ) |
| 149 | 134 148 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( ◡ 𝐺 “ ( 𝑡 (,) +∞ ) ) ∈ dom vol ) |
| 150 | 44 149 | ismbf3d | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) |