This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infimum of a sequence of measurable, real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 13-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfinf.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| mbfinf.2 | ⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ inf ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) ) | ||
| mbfinf.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| mbfinf.4 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | ||
| mbfinf.5 | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) ) → 𝐵 ∈ ℝ ) | ||
| mbfinf.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ 𝐵 ) | ||
| Assertion | mbfinf | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfinf.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | mbfinf.2 | ⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ inf ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) ) | |
| 3 | mbfinf.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | mbfinf.4 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | |
| 5 | mbfinf.5 | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) ) → 𝐵 ∈ ℝ ) | |
| 6 | mbfinf.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ 𝐵 ) | |
| 7 | 5 | anass1rs | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
| 8 | 7 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ ) |
| 9 | 8 | frnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⊆ ℝ ) |
| 10 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 11 | 3 10 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 12 | 11 1 | eleqtrrdi | ⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ∈ 𝑍 ) |
| 14 | eqid | ⊢ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) = ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) | |
| 15 | 14 7 | dmmptd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → dom ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) = 𝑍 ) |
| 16 | 13 15 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ∈ dom ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) |
| 17 | 16 | ne0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → dom ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ≠ ∅ ) |
| 18 | dm0rn0 | ⊢ ( dom ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) = ∅ ↔ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) = ∅ ) | |
| 19 | 18 | necon3bii | ⊢ ( dom ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ≠ ∅ ↔ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ≠ ∅ ) |
| 20 | 17 19 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ≠ ∅ ) |
| 21 | 8 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) Fn 𝑍 ) |
| 22 | breq2 | ⊢ ( 𝑧 = ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) → ( 𝑦 ≤ 𝑧 ↔ 𝑦 ≤ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ) ) | |
| 23 | 22 | ralrn | ⊢ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) Fn 𝑍 → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑦 ≤ 𝑧 ↔ ∀ 𝑚 ∈ 𝑍 𝑦 ≤ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ) ) |
| 24 | 21 23 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑦 ≤ 𝑧 ↔ ∀ 𝑚 ∈ 𝑍 𝑦 ≤ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ) ) |
| 25 | nfcv | ⊢ Ⅎ 𝑛 𝑦 | |
| 26 | nfcv | ⊢ Ⅎ 𝑛 ≤ | |
| 27 | nffvmpt1 | ⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) | |
| 28 | 25 26 27 | nfbr | ⊢ Ⅎ 𝑛 𝑦 ≤ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) |
| 29 | nfv | ⊢ Ⅎ 𝑚 𝑦 ≤ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) | |
| 30 | fveq2 | ⊢ ( 𝑚 = 𝑛 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) = ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) | |
| 31 | 30 | breq2d | ⊢ ( 𝑚 = 𝑛 → ( 𝑦 ≤ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ↔ 𝑦 ≤ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) ) |
| 32 | 28 29 31 | cbvralw | ⊢ ( ∀ 𝑚 ∈ 𝑍 𝑦 ≤ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ↔ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) |
| 33 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) | |
| 34 | 14 | fvmpt2 | ⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝐵 ∈ ℝ ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = 𝐵 ) |
| 35 | 33 7 34 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = 𝐵 ) |
| 36 | 35 | breq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝑦 ≤ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ↔ 𝑦 ≤ 𝐵 ) ) |
| 37 | 36 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ 𝐵 ) ) |
| 38 | 32 37 | bitrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑚 ∈ 𝑍 𝑦 ≤ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ↔ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ 𝐵 ) ) |
| 39 | 24 38 | bitrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑦 ≤ 𝑧 ↔ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ 𝐵 ) ) |
| 40 | 39 | rexbidv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑦 ≤ 𝑧 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ 𝐵 ) ) |
| 41 | 6 40 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑦 ≤ 𝑧 ) |
| 42 | infrenegsup | ⊢ ( ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⊆ ℝ ∧ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑦 ≤ 𝑧 ) → inf ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) = - sup ( { 𝑟 ∈ ℝ ∣ - 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) } , ℝ , < ) ) | |
| 43 | 9 20 41 42 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → inf ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) = - sup ( { 𝑟 ∈ ℝ ∣ - 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) } , ℝ , < ) ) |
| 44 | rabid | ⊢ ( 𝑟 ∈ { 𝑟 ∈ ℝ ∣ - 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) } ↔ ( 𝑟 ∈ ℝ ∧ - 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ) | |
| 45 | 7 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
| 46 | 45 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
| 47 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ) → 𝑟 ∈ ℝ ) | |
| 48 | 47 | recnd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ) → 𝑟 ∈ ℂ ) |
| 49 | negcon2 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑟 ∈ ℂ ) → ( 𝐵 = - 𝑟 ↔ 𝑟 = - 𝐵 ) ) | |
| 50 | 46 48 49 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐵 = - 𝑟 ↔ 𝑟 = - 𝐵 ) ) |
| 51 | eqcom | ⊢ ( 𝑟 = - 𝐵 ↔ - 𝐵 = 𝑟 ) | |
| 52 | 50 51 | bitrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐵 = - 𝑟 ↔ - 𝐵 = 𝑟 ) ) |
| 53 | 35 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = 𝐵 ) |
| 54 | 53 | eqeq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ) → ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = - 𝑟 ↔ 𝐵 = - 𝑟 ) ) |
| 55 | negex | ⊢ - 𝐵 ∈ V | |
| 56 | eqid | ⊢ ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) = ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) | |
| 57 | 56 | fvmpt2 | ⊢ ( ( 𝑛 ∈ 𝑍 ∧ - 𝐵 ∈ V ) → ( ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ‘ 𝑛 ) = - 𝐵 ) |
| 58 | 55 57 | mpan2 | ⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ‘ 𝑛 ) = - 𝐵 ) |
| 59 | 58 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ‘ 𝑛 ) = - 𝐵 ) |
| 60 | 59 | eqeq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ) → ( ( ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ‘ 𝑛 ) = 𝑟 ↔ - 𝐵 = 𝑟 ) ) |
| 61 | 52 54 60 | 3bitr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ) → ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = - 𝑟 ↔ ( ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ‘ 𝑛 ) = 𝑟 ) ) |
| 62 | 61 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑟 ∈ ℝ ) → ∀ 𝑛 ∈ 𝑍 ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = - 𝑟 ↔ ( ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ‘ 𝑛 ) = 𝑟 ) ) |
| 63 | 27 | nfeq1 | ⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) = - 𝑟 |
| 64 | nffvmpt1 | ⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ‘ 𝑚 ) | |
| 65 | 64 | nfeq1 | ⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ‘ 𝑚 ) = 𝑟 |
| 66 | 63 65 | nfbi | ⊢ Ⅎ 𝑛 ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) = - 𝑟 ↔ ( ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ‘ 𝑚 ) = 𝑟 ) |
| 67 | nfv | ⊢ Ⅎ 𝑚 ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = - 𝑟 ↔ ( ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ‘ 𝑛 ) = 𝑟 ) | |
| 68 | fveqeq2 | ⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) = - 𝑟 ↔ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = - 𝑟 ) ) | |
| 69 | fveqeq2 | ⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ‘ 𝑚 ) = 𝑟 ↔ ( ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ‘ 𝑛 ) = 𝑟 ) ) | |
| 70 | 68 69 | bibi12d | ⊢ ( 𝑚 = 𝑛 → ( ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) = - 𝑟 ↔ ( ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ‘ 𝑚 ) = 𝑟 ) ↔ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = - 𝑟 ↔ ( ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ‘ 𝑛 ) = 𝑟 ) ) ) |
| 71 | 66 67 70 | cbvralw | ⊢ ( ∀ 𝑚 ∈ 𝑍 ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) = - 𝑟 ↔ ( ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ‘ 𝑚 ) = 𝑟 ) ↔ ∀ 𝑛 ∈ 𝑍 ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = - 𝑟 ↔ ( ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ‘ 𝑛 ) = 𝑟 ) ) |
| 72 | 62 71 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑟 ∈ ℝ ) → ∀ 𝑚 ∈ 𝑍 ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) = - 𝑟 ↔ ( ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ‘ 𝑚 ) = 𝑟 ) ) |
| 73 | 72 | r19.21bi | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑚 ∈ 𝑍 ) → ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) = - 𝑟 ↔ ( ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ‘ 𝑚 ) = 𝑟 ) ) |
| 74 | 73 | rexbidva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑟 ∈ ℝ ) → ( ∃ 𝑚 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) = - 𝑟 ↔ ∃ 𝑚 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ‘ 𝑚 ) = 𝑟 ) ) |
| 75 | 21 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑟 ∈ ℝ ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) Fn 𝑍 ) |
| 76 | fvelrnb | ⊢ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) Fn 𝑍 → ( - 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ↔ ∃ 𝑚 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) = - 𝑟 ) ) | |
| 77 | 75 76 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑟 ∈ ℝ ) → ( - 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ↔ ∃ 𝑚 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) = - 𝑟 ) ) |
| 78 | 7 | renegcld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → - 𝐵 ∈ ℝ ) |
| 79 | 78 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) : 𝑍 ⟶ ℝ ) |
| 80 | 79 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑟 ∈ ℝ ) → ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) : 𝑍 ⟶ ℝ ) |
| 81 | 80 | ffnd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑟 ∈ ℝ ) → ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) Fn 𝑍 ) |
| 82 | fvelrnb | ⊢ ( ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) Fn 𝑍 → ( 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ↔ ∃ 𝑚 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ‘ 𝑚 ) = 𝑟 ) ) | |
| 83 | 81 82 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑟 ∈ ℝ ) → ( 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ↔ ∃ 𝑚 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ‘ 𝑚 ) = 𝑟 ) ) |
| 84 | 74 77 83 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑟 ∈ ℝ ) → ( - 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ↔ 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ) ) |
| 85 | 84 | pm5.32da | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑟 ∈ ℝ ∧ - 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ↔ ( 𝑟 ∈ ℝ ∧ 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ) ) ) |
| 86 | 79 | frnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ⊆ ℝ ) |
| 87 | 86 | sseld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) → 𝑟 ∈ ℝ ) ) |
| 88 | 87 | pm4.71rd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ↔ ( 𝑟 ∈ ℝ ∧ 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ) ) ) |
| 89 | 85 88 | bitr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑟 ∈ ℝ ∧ - 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ↔ 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ) ) |
| 90 | 44 89 | bitrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑟 ∈ { 𝑟 ∈ ℝ ∣ - 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) } ↔ 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ) ) |
| 91 | 90 | alrimiv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑟 ( 𝑟 ∈ { 𝑟 ∈ ℝ ∣ - 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) } ↔ 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ) ) |
| 92 | nfrab1 | ⊢ Ⅎ 𝑟 { 𝑟 ∈ ℝ ∣ - 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) } | |
| 93 | nfcv | ⊢ Ⅎ 𝑟 ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) | |
| 94 | 92 93 | cleqf | ⊢ ( { 𝑟 ∈ ℝ ∣ - 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) } = ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ↔ ∀ 𝑟 ( 𝑟 ∈ { 𝑟 ∈ ℝ ∣ - 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) } ↔ 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ) ) |
| 95 | 91 94 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → { 𝑟 ∈ ℝ ∣ - 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) } = ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) ) |
| 96 | 95 | supeq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → sup ( { 𝑟 ∈ ℝ ∣ - 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) } , ℝ , < ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) , ℝ , < ) ) |
| 97 | 96 | negeqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - sup ( { 𝑟 ∈ ℝ ∣ - 𝑟 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) } , ℝ , < ) = - sup ( ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) , ℝ , < ) ) |
| 98 | 43 97 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → inf ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) = - sup ( ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) , ℝ , < ) ) |
| 99 | 98 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ inf ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) ) = ( 𝑥 ∈ 𝐴 ↦ - sup ( ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) , ℝ , < ) ) ) |
| 100 | 2 99 | eqtrid | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐴 ↦ - sup ( ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) , ℝ , < ) ) ) |
| 101 | ltso | ⊢ < Or ℝ | |
| 102 | 101 | supex | ⊢ sup ( ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) , ℝ , < ) ∈ V |
| 103 | 102 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → sup ( ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) , ℝ , < ) ∈ V ) |
| 104 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) , ℝ , < ) ) = ( 𝑥 ∈ 𝐴 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) , ℝ , < ) ) | |
| 105 | 5 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 106 | 105 4 | mbfneg | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ MblFn ) |
| 107 | 5 | renegcld | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) ) → - 𝐵 ∈ ℝ ) |
| 108 | renegcl | ⊢ ( 𝑦 ∈ ℝ → - 𝑦 ∈ ℝ ) | |
| 109 | 108 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ 𝐵 ) ) → - 𝑦 ∈ ℝ ) |
| 110 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ) → 𝑦 ∈ ℝ ) | |
| 111 | 7 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
| 112 | 110 111 | lenegd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝑦 ≤ 𝐵 ↔ - 𝐵 ≤ - 𝑦 ) ) |
| 113 | 112 | ralbidva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ ) → ( ∀ 𝑛 ∈ 𝑍 𝑦 ≤ 𝐵 ↔ ∀ 𝑛 ∈ 𝑍 - 𝐵 ≤ - 𝑦 ) ) |
| 114 | 113 | biimpd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ ) → ( ∀ 𝑛 ∈ 𝑍 𝑦 ≤ 𝐵 → ∀ 𝑛 ∈ 𝑍 - 𝐵 ≤ - 𝑦 ) ) |
| 115 | 114 | impr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ 𝐵 ) ) → ∀ 𝑛 ∈ 𝑍 - 𝐵 ≤ - 𝑦 ) |
| 116 | brralrspcev | ⊢ ( ( - 𝑦 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 - 𝐵 ≤ - 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - 𝐵 ≤ 𝑧 ) | |
| 117 | 109 115 116 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ 𝐵 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - 𝐵 ≤ 𝑧 ) |
| 118 | 6 117 | rexlimddv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - 𝐵 ≤ 𝑧 ) |
| 119 | 1 104 3 106 107 118 | mbfsup | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) , ℝ , < ) ) ∈ MblFn ) |
| 120 | 103 119 | mbfneg | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - sup ( ran ( 𝑛 ∈ 𝑍 ↦ - 𝐵 ) , ℝ , < ) ) ∈ MblFn ) |
| 121 | 100 120 | eqeltrd | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) |