This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood of a restricted function in the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pmresg | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) ) → ( 𝐹 ↾ 𝐵 ) ∈ ( 𝐴 ↑pm 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i | ⊢ ( 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) → ¬ ( 𝐴 ↑pm 𝐶 ) = ∅ ) | |
| 2 | fnpm | ⊢ ↑pm Fn ( V × V ) | |
| 3 | 2 | fndmi | ⊢ dom ↑pm = ( V × V ) |
| 4 | 3 | ndmov | ⊢ ( ¬ ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐴 ↑pm 𝐶 ) = ∅ ) |
| 5 | 1 4 | nsyl2 | ⊢ ( 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) → ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) ) |
| 6 | 5 | simpld | ⊢ ( 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) → 𝐴 ∈ V ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) ) → 𝐴 ∈ V ) |
| 8 | simpl | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) ) → 𝐵 ∈ 𝑉 ) | |
| 9 | elpmi | ⊢ ( 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) → ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ dom 𝐹 ⊆ 𝐶 ) ) | |
| 10 | 9 | simpld | ⊢ ( 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) → 𝐹 : dom 𝐹 ⟶ 𝐴 ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) ) → 𝐹 : dom 𝐹 ⟶ 𝐴 ) |
| 12 | inss1 | ⊢ ( dom 𝐹 ∩ 𝐵 ) ⊆ dom 𝐹 | |
| 13 | fssres | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ ( dom 𝐹 ∩ 𝐵 ) ⊆ dom 𝐹 ) → ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐵 ) ) : ( dom 𝐹 ∩ 𝐵 ) ⟶ 𝐴 ) | |
| 14 | 11 12 13 | sylancl | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) ) → ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐵 ) ) : ( dom 𝐹 ∩ 𝐵 ) ⟶ 𝐴 ) |
| 15 | ffun | ⊢ ( 𝐹 : dom 𝐹 ⟶ 𝐴 → Fun 𝐹 ) | |
| 16 | resres | ⊢ ( ( 𝐹 ↾ dom 𝐹 ) ↾ 𝐵 ) = ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐵 ) ) | |
| 17 | funrel | ⊢ ( Fun 𝐹 → Rel 𝐹 ) | |
| 18 | resdm | ⊢ ( Rel 𝐹 → ( 𝐹 ↾ dom 𝐹 ) = 𝐹 ) | |
| 19 | reseq1 | ⊢ ( ( 𝐹 ↾ dom 𝐹 ) = 𝐹 → ( ( 𝐹 ↾ dom 𝐹 ) ↾ 𝐵 ) = ( 𝐹 ↾ 𝐵 ) ) | |
| 20 | 17 18 19 | 3syl | ⊢ ( Fun 𝐹 → ( ( 𝐹 ↾ dom 𝐹 ) ↾ 𝐵 ) = ( 𝐹 ↾ 𝐵 ) ) |
| 21 | 16 20 | eqtr3id | ⊢ ( Fun 𝐹 → ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐵 ) ) = ( 𝐹 ↾ 𝐵 ) ) |
| 22 | 11 15 21 | 3syl | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) ) → ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐵 ) ) = ( 𝐹 ↾ 𝐵 ) ) |
| 23 | 22 | feq1d | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) ) → ( ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐵 ) ) : ( dom 𝐹 ∩ 𝐵 ) ⟶ 𝐴 ↔ ( 𝐹 ↾ 𝐵 ) : ( dom 𝐹 ∩ 𝐵 ) ⟶ 𝐴 ) ) |
| 24 | 14 23 | mpbid | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) ) → ( 𝐹 ↾ 𝐵 ) : ( dom 𝐹 ∩ 𝐵 ) ⟶ 𝐴 ) |
| 25 | inss2 | ⊢ ( dom 𝐹 ∩ 𝐵 ) ⊆ 𝐵 | |
| 26 | elpm2r | ⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( 𝐹 ↾ 𝐵 ) : ( dom 𝐹 ∩ 𝐵 ) ⟶ 𝐴 ∧ ( dom 𝐹 ∩ 𝐵 ) ⊆ 𝐵 ) ) → ( 𝐹 ↾ 𝐵 ) ∈ ( 𝐴 ↑pm 𝐵 ) ) | |
| 27 | 25 26 | mpanr2 | ⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ↾ 𝐵 ) : ( dom 𝐹 ∩ 𝐵 ) ⟶ 𝐴 ) → ( 𝐹 ↾ 𝐵 ) ∈ ( 𝐴 ↑pm 𝐵 ) ) |
| 28 | 7 8 24 27 | syl21anc | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) ) → ( 𝐹 ↾ 𝐵 ) ∈ ( 𝐴 ↑pm 𝐵 ) ) |