This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Measurability of a piecewise function: if F is measurable on subsets B and C of its domain, and these pieces make up all of A , then F is measurable on the whole domain. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfres2.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) | |
| mbfres2.2 | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) ∈ MblFn ) | ||
| mbfres2.3 | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) ∈ MblFn ) | ||
| mbfres2.4 | ⊢ ( 𝜑 → ( 𝐵 ∪ 𝐶 ) = 𝐴 ) | ||
| Assertion | mbfres2 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfres2.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) | |
| 2 | mbfres2.2 | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) ∈ MblFn ) | |
| 3 | mbfres2.3 | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) ∈ MblFn ) | |
| 4 | mbfres2.4 | ⊢ ( 𝜑 → ( 𝐵 ∪ 𝐶 ) = 𝐴 ) | |
| 5 | 4 | reseq2d | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐵 ∪ 𝐶 ) ) = ( 𝐹 ↾ 𝐴 ) ) |
| 6 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ → 𝐹 Fn 𝐴 ) | |
| 7 | fnresdm | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) | |
| 8 | 1 6 7 | 3syl | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 9 | 5 8 | eqtr2d | ⊢ ( 𝜑 → 𝐹 = ( 𝐹 ↾ ( 𝐵 ∪ 𝐶 ) ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) → 𝐹 = ( 𝐹 ↾ ( 𝐵 ∪ 𝐶 ) ) ) |
| 11 | resundi | ⊢ ( 𝐹 ↾ ( 𝐵 ∪ 𝐶 ) ) = ( ( 𝐹 ↾ 𝐵 ) ∪ ( 𝐹 ↾ 𝐶 ) ) | |
| 12 | 10 11 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) → 𝐹 = ( ( 𝐹 ↾ 𝐵 ) ∪ ( 𝐹 ↾ 𝐶 ) ) ) |
| 13 | 12 | cnveqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) → ◡ 𝐹 = ◡ ( ( 𝐹 ↾ 𝐵 ) ∪ ( 𝐹 ↾ 𝐶 ) ) ) |
| 14 | cnvun | ⊢ ◡ ( ( 𝐹 ↾ 𝐵 ) ∪ ( 𝐹 ↾ 𝐶 ) ) = ( ◡ ( 𝐹 ↾ 𝐵 ) ∪ ◡ ( 𝐹 ↾ 𝐶 ) ) | |
| 15 | 13 14 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) → ◡ 𝐹 = ( ◡ ( 𝐹 ↾ 𝐵 ) ∪ ◡ ( 𝐹 ↾ 𝐶 ) ) ) |
| 16 | 15 | imaeq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) → ( ◡ 𝐹 “ 𝑥 ) = ( ( ◡ ( 𝐹 ↾ 𝐵 ) ∪ ◡ ( 𝐹 ↾ 𝐶 ) ) “ 𝑥 ) ) |
| 17 | imaundir | ⊢ ( ( ◡ ( 𝐹 ↾ 𝐵 ) ∪ ◡ ( 𝐹 ↾ 𝐶 ) ) “ 𝑥 ) = ( ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑥 ) ∪ ( ◡ ( 𝐹 ↾ 𝐶 ) “ 𝑥 ) ) | |
| 18 | 16 17 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) → ( ◡ 𝐹 “ 𝑥 ) = ( ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑥 ) ∪ ( ◡ ( 𝐹 ↾ 𝐶 ) “ 𝑥 ) ) ) |
| 19 | ssun1 | ⊢ 𝐵 ⊆ ( 𝐵 ∪ 𝐶 ) | |
| 20 | 19 4 | sseqtrid | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
| 21 | 1 20 | fssresd | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ ℝ ) |
| 22 | ismbf | ⊢ ( ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ ℝ → ( ( 𝐹 ↾ 𝐵 ) ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑥 ) ∈ dom vol ) ) | |
| 23 | 21 22 | syl | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐵 ) ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑥 ) ∈ dom vol ) ) |
| 24 | 2 23 | mpbid | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ran (,) ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑥 ) ∈ dom vol ) |
| 25 | 24 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) → ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑥 ) ∈ dom vol ) |
| 26 | ssun2 | ⊢ 𝐶 ⊆ ( 𝐵 ∪ 𝐶 ) | |
| 27 | 26 4 | sseqtrid | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
| 28 | 1 27 | fssresd | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ ℝ ) |
| 29 | ismbf | ⊢ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ ℝ → ( ( 𝐹 ↾ 𝐶 ) ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ ( 𝐹 ↾ 𝐶 ) “ 𝑥 ) ∈ dom vol ) ) | |
| 30 | 28 29 | syl | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐶 ) ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ ( 𝐹 ↾ 𝐶 ) “ 𝑥 ) ∈ dom vol ) ) |
| 31 | 3 30 | mpbid | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ran (,) ( ◡ ( 𝐹 ↾ 𝐶 ) “ 𝑥 ) ∈ dom vol ) |
| 32 | 31 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) → ( ◡ ( 𝐹 ↾ 𝐶 ) “ 𝑥 ) ∈ dom vol ) |
| 33 | unmbl | ⊢ ( ( ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( 𝐹 ↾ 𝐶 ) “ 𝑥 ) ∈ dom vol ) → ( ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑥 ) ∪ ( ◡ ( 𝐹 ↾ 𝐶 ) “ 𝑥 ) ) ∈ dom vol ) | |
| 34 | 25 32 33 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) → ( ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑥 ) ∪ ( ◡ ( 𝐹 ↾ 𝐶 ) “ 𝑥 ) ) ∈ dom vol ) |
| 35 | 18 34 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) → ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) |
| 36 | 35 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) |
| 37 | ismbf | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( 𝐹 ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) | |
| 38 | 1 37 | syl | ⊢ ( 𝜑 → ( 𝐹 ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) |
| 39 | 36 38 | mpbird | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |