This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Converse to mbfpos . (Contributed by Mario Carneiro, 11-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfpos.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| mbfposr.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ) | ||
| mbfposr.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) | ||
| Assertion | mbfposr | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfpos.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 2 | mbfposr.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ) | |
| 3 | mbfposr.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) | |
| 4 | 1 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) |
| 5 | 0re | ⊢ 0 ∈ ℝ | |
| 6 | ifcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ) | |
| 7 | 1 5 6 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ) |
| 8 | 2 7 | mbfdm2 | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 9 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 < 0 ) | |
| 10 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) | |
| 11 | 10 | lt0neg1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 < 0 ↔ 0 < - 𝑦 ) ) |
| 12 | 9 11 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) ∧ 𝑥 ∈ 𝐴 ) → 0 < - 𝑦 ) |
| 13 | 12 | biantrurd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 < - 𝑦 ↔ ( 0 < - 𝑦 ∧ - 𝐵 < - 𝑦 ) ) ) |
| 14 | 1 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 15 | 10 14 | ltnegd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 < 𝐵 ↔ - 𝐵 < - 𝑦 ) ) |
| 16 | 0red | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) ∧ 𝑥 ∈ 𝐴 ) → 0 ∈ ℝ ) | |
| 17 | 14 | renegcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℝ ) |
| 18 | 10 | renegcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) ∧ 𝑥 ∈ 𝐴 ) → - 𝑦 ∈ ℝ ) |
| 19 | maxlt | ⊢ ( ( 0 ∈ ℝ ∧ - 𝐵 ∈ ℝ ∧ - 𝑦 ∈ ℝ ) → ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) < - 𝑦 ↔ ( 0 < - 𝑦 ∧ - 𝐵 < - 𝑦 ) ) ) | |
| 20 | 16 17 18 19 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) < - 𝑦 ↔ ( 0 < - 𝑦 ∧ - 𝐵 < - 𝑦 ) ) ) |
| 21 | 13 15 20 | 3bitr4rd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) < - 𝑦 ↔ 𝑦 < 𝐵 ) ) |
| 22 | 1 | renegcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℝ ) |
| 23 | ifcl | ⊢ ( ( - 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ) | |
| 24 | 22 5 23 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ) |
| 25 | 24 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ) |
| 26 | 25 | biantrurd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) < - 𝑦 ↔ ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ∧ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) < - 𝑦 ) ) ) |
| 27 | 14 | biantrurd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 < 𝐵 ↔ ( 𝐵 ∈ ℝ ∧ 𝑦 < 𝐵 ) ) ) |
| 28 | 21 26 27 | 3bitr3d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ∧ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) < - 𝑦 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑦 < 𝐵 ) ) ) |
| 29 | 18 | rexrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) ∧ 𝑥 ∈ 𝐴 ) → - 𝑦 ∈ ℝ* ) |
| 30 | elioomnf | ⊢ ( - 𝑦 ∈ ℝ* → ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ( -∞ (,) - 𝑦 ) ↔ ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ∧ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) < - 𝑦 ) ) ) | |
| 31 | 29 30 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ( -∞ (,) - 𝑦 ) ↔ ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ∧ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) < - 𝑦 ) ) ) |
| 32 | 10 | rexrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) |
| 33 | elioopnf | ⊢ ( 𝑦 ∈ ℝ* → ( 𝐵 ∈ ( 𝑦 (,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑦 < 𝐵 ) ) ) | |
| 34 | 32 33 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ∈ ( 𝑦 (,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑦 < 𝐵 ) ) ) |
| 35 | 28 31 34 | 3bitr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ( -∞ (,) - 𝑦 ) ↔ 𝐵 ∈ ( 𝑦 (,) +∞ ) ) ) |
| 36 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 37 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) | |
| 38 | 37 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ‘ 𝑥 ) = if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 39 | 36 24 38 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ‘ 𝑥 ) = if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 40 | 39 | eleq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) - 𝑦 ) ↔ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ( -∞ (,) - 𝑦 ) ) ) |
| 41 | 40 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) - 𝑦 ) ↔ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ( -∞ (,) - 𝑦 ) ) ) |
| 42 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 43 | 42 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 44 | 36 1 43 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 45 | 44 | eleq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( 𝑦 (,) +∞ ) ↔ 𝐵 ∈ ( 𝑦 (,) +∞ ) ) ) |
| 46 | 45 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( 𝑦 (,) +∞ ) ↔ 𝐵 ∈ ( 𝑦 (,) +∞ ) ) ) |
| 47 | 35 41 46 | 3bitr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) - 𝑦 ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( 𝑦 (,) +∞ ) ) ) |
| 48 | 47 | pm5.32da | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) → ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) - 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) |
| 49 | 24 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) : 𝐴 ⟶ ℝ ) |
| 50 | ffn | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) : 𝐴 ⟶ ℝ → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) Fn 𝐴 ) | |
| 51 | elpreima | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) Fn 𝐴 → ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) “ ( -∞ (,) - 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) - 𝑦 ) ) ) ) | |
| 52 | 49 50 51 | 3syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) “ ( -∞ (,) - 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) - 𝑦 ) ) ) ) |
| 53 | 52 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) → ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) “ ( -∞ (,) - 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) - 𝑦 ) ) ) ) |
| 54 | ffn | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) | |
| 55 | elpreima | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 → ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) | |
| 56 | 4 54 55 | 3syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) |
| 57 | 56 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) → ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) |
| 58 | 48 53 57 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) → ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) “ ( -∞ (,) - 𝑦 ) ) ↔ 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑦 (,) +∞ ) ) ) ) |
| 59 | 58 | alrimiv | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) → ∀ 𝑥 ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) “ ( -∞ (,) - 𝑦 ) ) ↔ 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑦 (,) +∞ ) ) ) ) |
| 60 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) | |
| 61 | 60 | nfcnv | ⊢ Ⅎ 𝑥 ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 62 | nfcv | ⊢ Ⅎ 𝑥 ( -∞ (,) - 𝑦 ) | |
| 63 | 61 62 | nfima | ⊢ Ⅎ 𝑥 ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) “ ( -∞ (,) - 𝑦 ) ) |
| 64 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 65 | 64 | nfcnv | ⊢ Ⅎ 𝑥 ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 66 | nfcv | ⊢ Ⅎ 𝑥 ( 𝑦 (,) +∞ ) | |
| 67 | 65 66 | nfima | ⊢ Ⅎ 𝑥 ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑦 (,) +∞ ) ) |
| 68 | 63 67 | cleqf | ⊢ ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) “ ( -∞ (,) - 𝑦 ) ) = ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑦 (,) +∞ ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) “ ( -∞ (,) - 𝑦 ) ) ↔ 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑦 (,) +∞ ) ) ) ) |
| 69 | 59 68 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) “ ( -∞ (,) - 𝑦 ) ) = ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑦 (,) +∞ ) ) ) |
| 70 | mbfima | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) : 𝐴 ⟶ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) “ ( -∞ (,) - 𝑦 ) ) ∈ dom vol ) | |
| 71 | 3 49 70 | syl2anc | ⊢ ( 𝜑 → ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) “ ( -∞ (,) - 𝑦 ) ) ∈ dom vol ) |
| 72 | 71 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) “ ( -∞ (,) - 𝑦 ) ) ∈ dom vol ) |
| 73 | 69 72 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 0 ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑦 (,) +∞ ) ) ∈ dom vol ) |
| 74 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝑦 ) | |
| 75 | 0red | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → 0 ∈ ℝ ) | |
| 76 | 1 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 77 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) | |
| 78 | maxle | ⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ≤ 𝑦 ↔ ( 0 ≤ 𝑦 ∧ 𝐵 ≤ 𝑦 ) ) ) | |
| 79 | 75 76 77 78 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ≤ 𝑦 ↔ ( 0 ≤ 𝑦 ∧ 𝐵 ≤ 𝑦 ) ) ) |
| 80 | 74 79 | mpbirand | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ≤ 𝑦 ↔ 𝐵 ≤ 𝑦 ) ) |
| 81 | 80 | notbid | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ≤ 𝑦 ↔ ¬ 𝐵 ≤ 𝑦 ) ) |
| 82 | 76 5 6 | sylancl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ) |
| 83 | 77 82 | ltnled | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 < if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ↔ ¬ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ≤ 𝑦 ) ) |
| 84 | 77 76 | ltnled | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 < 𝐵 ↔ ¬ 𝐵 ≤ 𝑦 ) ) |
| 85 | 81 83 84 | 3bitr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 < if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ↔ 𝑦 < 𝐵 ) ) |
| 86 | 82 | biantrurd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 < if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ↔ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ∧ 𝑦 < if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) ) |
| 87 | 76 | biantrurd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 < 𝐵 ↔ ( 𝐵 ∈ ℝ ∧ 𝑦 < 𝐵 ) ) ) |
| 88 | 85 86 87 | 3bitr3d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ∧ 𝑦 < if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑦 < 𝐵 ) ) ) |
| 89 | 77 | rexrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) |
| 90 | elioopnf | ⊢ ( 𝑦 ∈ ℝ* → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ∧ 𝑦 < if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) ) | |
| 91 | 89 90 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ∧ 𝑦 < if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) ) |
| 92 | 89 33 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ∈ ( 𝑦 (,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑦 < 𝐵 ) ) ) |
| 93 | 88 91 92 | 3bitr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ( 𝑦 (,) +∞ ) ↔ 𝐵 ∈ ( 𝑦 (,) +∞ ) ) ) |
| 94 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) | |
| 95 | 94 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ‘ 𝑥 ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 96 | 36 7 95 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ‘ 𝑥 ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 97 | 96 | eleq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( 𝑦 (,) +∞ ) ↔ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ( 𝑦 (,) +∞ ) ) ) |
| 98 | 97 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( 𝑦 (,) +∞ ) ↔ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ( 𝑦 (,) +∞ ) ) ) |
| 99 | 45 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( 𝑦 (,) +∞ ) ↔ 𝐵 ∈ ( 𝑦 (,) +∞ ) ) ) |
| 100 | 93 98 99 | 3bitr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( 𝑦 (,) +∞ ) ) ) |
| 101 | 100 | pm5.32da | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) → ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) |
| 102 | 7 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) : 𝐴 ⟶ ℝ ) |
| 103 | ffn | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) : 𝐴 ⟶ ℝ → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) Fn 𝐴 ) | |
| 104 | elpreima | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) Fn 𝐴 → ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) “ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) | |
| 105 | 102 103 104 | 3syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) “ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) |
| 106 | 105 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) → ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) “ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) |
| 107 | 56 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) → ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) |
| 108 | 101 106 107 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) → ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) “ ( 𝑦 (,) +∞ ) ) ↔ 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑦 (,) +∞ ) ) ) ) |
| 109 | 108 | alrimiv | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) → ∀ 𝑥 ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) “ ( 𝑦 (,) +∞ ) ) ↔ 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑦 (,) +∞ ) ) ) ) |
| 110 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) | |
| 111 | 110 | nfcnv | ⊢ Ⅎ 𝑥 ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 112 | 111 66 | nfima | ⊢ Ⅎ 𝑥 ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) “ ( 𝑦 (,) +∞ ) ) |
| 113 | 112 67 | cleqf | ⊢ ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) “ ( 𝑦 (,) +∞ ) ) = ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑦 (,) +∞ ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) “ ( 𝑦 (,) +∞ ) ) ↔ 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑦 (,) +∞ ) ) ) ) |
| 114 | 109 113 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) “ ( 𝑦 (,) +∞ ) ) = ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑦 (,) +∞ ) ) ) |
| 115 | mbfima | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) : 𝐴 ⟶ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) “ ( 𝑦 (,) +∞ ) ) ∈ dom vol ) | |
| 116 | 2 102 115 | syl2anc | ⊢ ( 𝜑 → ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) “ ( 𝑦 (,) +∞ ) ) ∈ dom vol ) |
| 117 | 116 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) “ ( 𝑦 (,) +∞ ) ) ∈ dom vol ) |
| 118 | 114 117 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 ≤ 𝑦 ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑦 (,) +∞ ) ) ∈ dom vol ) |
| 119 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) | |
| 120 | 0red | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 0 ∈ ℝ ) | |
| 121 | 73 118 119 120 | ltlecasei | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑦 (,) +∞ ) ) ∈ dom vol ) |
| 122 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 < 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → 0 < 𝑦 ) | |
| 123 | 0red | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 < 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → 0 ∈ ℝ ) | |
| 124 | 1 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 < 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 125 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 < 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) | |
| 126 | maxlt | ⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) < 𝑦 ↔ ( 0 < 𝑦 ∧ 𝐵 < 𝑦 ) ) ) | |
| 127 | 123 124 125 126 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 < 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) < 𝑦 ↔ ( 0 < 𝑦 ∧ 𝐵 < 𝑦 ) ) ) |
| 128 | 122 127 | mpbirand | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 < 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) < 𝑦 ↔ 𝐵 < 𝑦 ) ) |
| 129 | 7 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 < 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ) |
| 130 | 129 | biantrurd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 < 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) < 𝑦 ↔ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ∧ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) < 𝑦 ) ) ) |
| 131 | 124 | biantrurd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 < 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 < 𝑦 ↔ ( 𝐵 ∈ ℝ ∧ 𝐵 < 𝑦 ) ) ) |
| 132 | 128 130 131 | 3bitr3d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 < 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ∧ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) < 𝑦 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐵 < 𝑦 ) ) ) |
| 133 | 125 | rexrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 < 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) |
| 134 | elioomnf | ⊢ ( 𝑦 ∈ ℝ* → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ∧ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) < 𝑦 ) ) ) | |
| 135 | 133 134 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 < 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ∧ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) < 𝑦 ) ) ) |
| 136 | elioomnf | ⊢ ( 𝑦 ∈ ℝ* → ( 𝐵 ∈ ( -∞ (,) 𝑦 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐵 < 𝑦 ) ) ) | |
| 137 | 133 136 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 < 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ∈ ( -∞ (,) 𝑦 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐵 < 𝑦 ) ) ) |
| 138 | 132 135 137 | 3bitr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 < 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ( -∞ (,) 𝑦 ) ↔ 𝐵 ∈ ( -∞ (,) 𝑦 ) ) ) |
| 139 | 96 | eleq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) 𝑦 ) ↔ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ( -∞ (,) 𝑦 ) ) ) |
| 140 | 139 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 < 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) 𝑦 ) ↔ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ( -∞ (,) 𝑦 ) ) ) |
| 141 | 44 | eleq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( -∞ (,) 𝑦 ) ↔ 𝐵 ∈ ( -∞ (,) 𝑦 ) ) ) |
| 142 | 141 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 < 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( -∞ (,) 𝑦 ) ↔ 𝐵 ∈ ( -∞ (,) 𝑦 ) ) ) |
| 143 | 138 140 142 | 3bitr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 < 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( -∞ (,) 𝑦 ) ) ) |
| 144 | 143 | pm5.32da | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 < 𝑦 ) → ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) |
| 145 | elpreima | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) Fn 𝐴 → ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) “ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) | |
| 146 | 102 103 145 | 3syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) “ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) |
| 147 | 146 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 < 𝑦 ) → ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) “ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) |
| 148 | elpreima | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 → ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) | |
| 149 | 4 54 148 | 3syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) |
| 150 | 149 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 < 𝑦 ) → ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) |
| 151 | 144 147 150 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 < 𝑦 ) → ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) “ ( -∞ (,) 𝑦 ) ) ↔ 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 𝑦 ) ) ) ) |
| 152 | 151 | alrimiv | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 < 𝑦 ) → ∀ 𝑥 ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) “ ( -∞ (,) 𝑦 ) ) ↔ 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 𝑦 ) ) ) ) |
| 153 | nfcv | ⊢ Ⅎ 𝑥 ( -∞ (,) 𝑦 ) | |
| 154 | 111 153 | nfima | ⊢ Ⅎ 𝑥 ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) “ ( -∞ (,) 𝑦 ) ) |
| 155 | 65 153 | nfima | ⊢ Ⅎ 𝑥 ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 𝑦 ) ) |
| 156 | 154 155 | cleqf | ⊢ ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) “ ( -∞ (,) 𝑦 ) ) = ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 𝑦 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) “ ( -∞ (,) 𝑦 ) ) ↔ 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 𝑦 ) ) ) ) |
| 157 | 152 156 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 < 𝑦 ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) “ ( -∞ (,) 𝑦 ) ) = ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 𝑦 ) ) ) |
| 158 | mbfima | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) : 𝐴 ⟶ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) | |
| 159 | 2 102 158 | syl2anc | ⊢ ( 𝜑 → ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) |
| 160 | 159 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 < 𝑦 ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) |
| 161 | 157 160 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 0 < 𝑦 ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) |
| 162 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ≤ 0 ) | |
| 163 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) | |
| 164 | 163 | le0neg1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ≤ 0 ↔ 0 ≤ - 𝑦 ) ) |
| 165 | 162 164 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ - 𝑦 ) |
| 166 | 165 | biantrurd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 ≤ - 𝑦 ↔ ( 0 ≤ - 𝑦 ∧ - 𝐵 ≤ - 𝑦 ) ) ) |
| 167 | 1 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 168 | 163 167 | lenegd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ≤ 𝐵 ↔ - 𝐵 ≤ - 𝑦 ) ) |
| 169 | 0red | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → 0 ∈ ℝ ) | |
| 170 | 167 | renegcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℝ ) |
| 171 | 163 | renegcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → - 𝑦 ∈ ℝ ) |
| 172 | maxle | ⊢ ( ( 0 ∈ ℝ ∧ - 𝐵 ∈ ℝ ∧ - 𝑦 ∈ ℝ ) → ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ≤ - 𝑦 ↔ ( 0 ≤ - 𝑦 ∧ - 𝐵 ≤ - 𝑦 ) ) ) | |
| 173 | 169 170 171 172 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ≤ - 𝑦 ↔ ( 0 ≤ - 𝑦 ∧ - 𝐵 ≤ - 𝑦 ) ) ) |
| 174 | 166 168 173 | 3bitr4rd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ≤ - 𝑦 ↔ 𝑦 ≤ 𝐵 ) ) |
| 175 | 174 | notbid | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ≤ - 𝑦 ↔ ¬ 𝑦 ≤ 𝐵 ) ) |
| 176 | 24 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ) |
| 177 | 171 176 | ltnled | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( - 𝑦 < if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ↔ ¬ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ≤ - 𝑦 ) ) |
| 178 | 167 163 | ltnled | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 < 𝑦 ↔ ¬ 𝑦 ≤ 𝐵 ) ) |
| 179 | 175 177 178 | 3bitr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( - 𝑦 < if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ↔ 𝐵 < 𝑦 ) ) |
| 180 | 176 | biantrurd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( - 𝑦 < if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ↔ ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ∧ - 𝑦 < if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ) |
| 181 | 167 | biantrurd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 < 𝑦 ↔ ( 𝐵 ∈ ℝ ∧ 𝐵 < 𝑦 ) ) ) |
| 182 | 179 180 181 | 3bitr3d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ∧ - 𝑦 < if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐵 < 𝑦 ) ) ) |
| 183 | 171 | rexrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → - 𝑦 ∈ ℝ* ) |
| 184 | elioopnf | ⊢ ( - 𝑦 ∈ ℝ* → ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ( - 𝑦 (,) +∞ ) ↔ ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ∧ - 𝑦 < if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ) | |
| 185 | 183 184 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ( - 𝑦 (,) +∞ ) ↔ ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ∧ - 𝑦 < if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ) |
| 186 | 163 | rexrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) |
| 187 | 186 136 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ∈ ( -∞ (,) 𝑦 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐵 < 𝑦 ) ) ) |
| 188 | 182 185 187 | 3bitr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ( - 𝑦 (,) +∞ ) ↔ 𝐵 ∈ ( -∞ (,) 𝑦 ) ) ) |
| 189 | 39 | eleq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( - 𝑦 (,) +∞ ) ↔ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ( - 𝑦 (,) +∞ ) ) ) |
| 190 | 189 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( - 𝑦 (,) +∞ ) ↔ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ( - 𝑦 (,) +∞ ) ) ) |
| 191 | 141 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( -∞ (,) 𝑦 ) ↔ 𝐵 ∈ ( -∞ (,) 𝑦 ) ) ) |
| 192 | 188 190 191 | 3bitr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( - 𝑦 (,) +∞ ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( -∞ (,) 𝑦 ) ) ) |
| 193 | 192 | pm5.32da | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) → ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( - 𝑦 (,) +∞ ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) |
| 194 | elpreima | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) Fn 𝐴 → ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) “ ( - 𝑦 (,) +∞ ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( - 𝑦 (,) +∞ ) ) ) ) | |
| 195 | 49 50 194 | 3syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) “ ( - 𝑦 (,) +∞ ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( - 𝑦 (,) +∞ ) ) ) ) |
| 196 | 195 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) → ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) “ ( - 𝑦 (,) +∞ ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ‘ 𝑥 ) ∈ ( - 𝑦 (,) +∞ ) ) ) ) |
| 197 | 149 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) → ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) |
| 198 | 193 196 197 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) → ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) “ ( - 𝑦 (,) +∞ ) ) ↔ 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 𝑦 ) ) ) ) |
| 199 | 198 | alrimiv | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) → ∀ 𝑥 ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) “ ( - 𝑦 (,) +∞ ) ) ↔ 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 𝑦 ) ) ) ) |
| 200 | nfcv | ⊢ Ⅎ 𝑥 ( - 𝑦 (,) +∞ ) | |
| 201 | 61 200 | nfima | ⊢ Ⅎ 𝑥 ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) “ ( - 𝑦 (,) +∞ ) ) |
| 202 | 201 155 | cleqf | ⊢ ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) “ ( - 𝑦 (,) +∞ ) ) = ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 𝑦 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) “ ( - 𝑦 (,) +∞ ) ) ↔ 𝑥 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 𝑦 ) ) ) ) |
| 203 | 199 202 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) “ ( - 𝑦 (,) +∞ ) ) = ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 𝑦 ) ) ) |
| 204 | mbfima | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) : 𝐴 ⟶ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) “ ( - 𝑦 (,) +∞ ) ) ∈ dom vol ) | |
| 205 | 3 49 204 | syl2anc | ⊢ ( 𝜑 → ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) “ ( - 𝑦 (,) +∞ ) ) ∈ dom vol ) |
| 206 | 205 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) “ ( - 𝑦 (,) +∞ ) ) ∈ dom vol ) |
| 207 | 203 206 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ≤ 0 ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) |
| 208 | 161 207 120 119 | ltlecasei | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) |
| 209 | 4 8 121 208 | ismbf2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |