This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The positive part of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfpos.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| mbfpos.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | ||
| Assertion | mbfpos | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfpos.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 2 | mbfpos.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | |
| 3 | c0ex | ⊢ 0 ∈ V | |
| 4 | 3 | fvconst2 | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 5 | 4 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 6 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 7 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 8 | 7 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 9 | 6 1 8 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 10 | 5 9 | breq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ 0 ≤ 𝐵 ) ) |
| 11 | 10 9 5 | ifbieq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 12 | 11 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) |
| 13 | 0re | ⊢ 0 ∈ ℝ | |
| 14 | 13 | fconst6 | ⊢ ( 𝐴 × { 0 } ) : 𝐴 ⟶ ℝ |
| 15 | 14 | a1i | ⊢ ( 𝜑 → ( 𝐴 × { 0 } ) : 𝐴 ⟶ ℝ ) |
| 16 | 2 1 | mbfdm2 | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 17 | 0cnd | ⊢ ( 𝜑 → 0 ∈ ℂ ) | |
| 18 | mbfconst | ⊢ ( ( 𝐴 ∈ dom vol ∧ 0 ∈ ℂ ) → ( 𝐴 × { 0 } ) ∈ MblFn ) | |
| 19 | 16 17 18 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 × { 0 } ) ∈ MblFn ) |
| 20 | 1 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) |
| 21 | nfcv | ⊢ Ⅎ 𝑦 if ( ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ) | |
| 22 | nfcv | ⊢ Ⅎ 𝑥 ( ( 𝐴 × { 0 } ) ‘ 𝑦 ) | |
| 23 | nfcv | ⊢ Ⅎ 𝑥 ≤ | |
| 24 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) | |
| 25 | 22 23 24 | nfbr | ⊢ Ⅎ 𝑥 ( ( 𝐴 × { 0 } ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) |
| 26 | 25 24 22 | nfif | ⊢ Ⅎ 𝑥 if ( ( ( 𝐴 × { 0 } ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝐴 × { 0 } ) ‘ 𝑦 ) ) |
| 27 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = ( ( 𝐴 × { 0 } ) ‘ 𝑦 ) ) | |
| 28 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) | |
| 29 | 27 28 | breq12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ ( ( 𝐴 × { 0 } ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) ) |
| 30 | 29 28 27 | ifbieq12d | ⊢ ( 𝑥 = 𝑦 → if ( ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ) = if ( ( ( 𝐴 × { 0 } ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝐴 × { 0 } ) ‘ 𝑦 ) ) ) |
| 31 | 21 26 30 | cbvmpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ if ( ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ) ) = ( 𝑦 ∈ 𝐴 ↦ if ( ( ( 𝐴 × { 0 } ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝐴 × { 0 } ) ‘ 𝑦 ) ) ) |
| 32 | 15 19 20 2 31 | mbfmax | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 33 | 12 32 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ) |