This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is measurable iff its positive and negative parts are measurable. (Contributed by Mario Carneiro, 11-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mbfpos.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| Assertion | mbfposb | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfpos.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 2 | nfcv | ⊢ Ⅎ 𝑥 0 | |
| 3 | nfcv | ⊢ Ⅎ 𝑥 ≤ | |
| 4 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) | |
| 5 | 2 3 4 | nfbr | ⊢ Ⅎ 𝑥 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) |
| 6 | 5 4 2 | nfif | ⊢ Ⅎ 𝑥 if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) |
| 7 | nfcv | ⊢ Ⅎ 𝑦 if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , 0 ) | |
| 8 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) | |
| 9 | 8 | breq2d | ⊢ ( 𝑦 = 𝑥 → ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ↔ 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) |
| 10 | 9 8 | ifbieq1d | ⊢ ( 𝑦 = 𝑥 → if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) = if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , 0 ) ) |
| 11 | 6 7 10 | cbvmpt | ⊢ ( 𝑦 ∈ 𝐴 ↦ if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , 0 ) ) |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 13 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 14 | 13 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 15 | 12 1 14 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 16 | 15 | breq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ 0 ≤ 𝐵 ) ) |
| 17 | 16 15 | ifbieq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , 0 ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 18 | 17 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) |
| 19 | 11 18 | eqtrid | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( 𝑦 ∈ 𝐴 ↦ if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) |
| 21 | 1 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) |
| 22 | 21 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) |
| 23 | 22 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ∈ ℝ ) |
| 24 | nfcv | ⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) | |
| 25 | 4 24 8 | cbvmpt | ⊢ ( 𝑦 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
| 26 | 15 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 27 | 25 26 | eqtrid | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 28 | 27 | eleq1d | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) ∈ MblFn ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) ) |
| 29 | 28 | biimpar | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( 𝑦 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) ∈ MblFn ) |
| 30 | 23 29 | mbfpos | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( 𝑦 ∈ 𝐴 ↦ if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) ) ∈ MblFn ) |
| 31 | 20 30 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ) |
| 32 | 4 | nfneg | ⊢ Ⅎ 𝑥 - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) |
| 33 | 2 3 32 | nfbr | ⊢ Ⅎ 𝑥 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) |
| 34 | 33 32 2 | nfif | ⊢ Ⅎ 𝑥 if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) |
| 35 | nfcv | ⊢ Ⅎ 𝑦 if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , 0 ) | |
| 36 | 8 | negeqd | ⊢ ( 𝑦 = 𝑥 → - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) = - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
| 37 | 36 | breq2d | ⊢ ( 𝑦 = 𝑥 → ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ↔ 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) |
| 38 | 37 36 | ifbieq1d | ⊢ ( 𝑦 = 𝑥 → if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) = if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , 0 ) ) |
| 39 | 34 35 38 | cbvmpt | ⊢ ( 𝑦 ∈ 𝐴 ↦ if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , 0 ) ) |
| 40 | 15 | negeqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = - 𝐵 ) |
| 41 | 40 | breq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ 0 ≤ - 𝐵 ) ) |
| 42 | 41 40 | ifbieq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , 0 ) = if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 43 | 42 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) |
| 44 | 39 43 | eqtrid | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) |
| 45 | 44 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( 𝑦 ∈ 𝐴 ↦ if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) |
| 46 | 23 | renegcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) ∧ 𝑦 ∈ 𝐴 ) → - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ∈ ℝ ) |
| 47 | 23 29 | mbfneg | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( 𝑦 ∈ 𝐴 ↦ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) ∈ MblFn ) |
| 48 | 46 47 | mbfpos | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( 𝑦 ∈ 𝐴 ↦ if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) ) ∈ MblFn ) |
| 49 | 45 48 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) |
| 50 | 31 49 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) ) |
| 51 | 27 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) ) → ( 𝑦 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 52 | 21 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ∈ ℝ ) |
| 53 | 52 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ∈ ℝ ) |
| 54 | 19 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) ) → ( 𝑦 ∈ 𝐴 ↦ if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) |
| 55 | simprl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) ) → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ) | |
| 56 | 54 55 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) ) → ( 𝑦 ∈ 𝐴 ↦ if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) ) ∈ MblFn ) |
| 57 | 44 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) ) → ( 𝑦 ∈ 𝐴 ↦ if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) |
| 58 | simprr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) ) → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) | |
| 59 | 57 58 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) ) → ( 𝑦 ∈ 𝐴 ↦ if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) ) ∈ MblFn ) |
| 60 | 53 56 59 | mbfposr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) ) → ( 𝑦 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) ∈ MblFn ) |
| 61 | 51 60 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 62 | 50 61 | impbida | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) ) ) |