This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit supremum of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 12-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbflimsup.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| mbflimsup.2 | ⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ) | ||
| mbflimsup.h | ⊢ 𝐻 = ( 𝑚 ∈ ℝ ↦ sup ( ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) “ ( 𝑚 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | ||
| mbflimsup.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| mbflimsup.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) | ||
| mbflimsup.5 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | ||
| mbflimsup.6 | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) ) → 𝐵 ∈ ℝ ) | ||
| Assertion | mbflimsup | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbflimsup.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | mbflimsup.2 | ⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ) | |
| 3 | mbflimsup.h | ⊢ 𝐻 = ( 𝑚 ∈ ℝ ↦ sup ( ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) “ ( 𝑚 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | |
| 4 | mbflimsup.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 5 | mbflimsup.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) | |
| 6 | mbflimsup.5 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | |
| 7 | mbflimsup.6 | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) ) → 𝐵 ∈ ℝ ) | |
| 8 | 1 | fvexi | ⊢ 𝑍 ∈ V |
| 9 | 8 | mptex | ⊢ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ∈ V |
| 10 | 9 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ∈ V ) |
| 11 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 12 | 1 11 | eqsstri | ⊢ 𝑍 ⊆ ℤ |
| 13 | zssre | ⊢ ℤ ⊆ ℝ | |
| 14 | 12 13 | sstri | ⊢ 𝑍 ⊆ ℝ |
| 15 | 14 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑍 ⊆ ℝ ) |
| 16 | 1 | uzsup | ⊢ ( 𝑀 ∈ ℤ → sup ( 𝑍 , ℝ* , < ) = +∞ ) |
| 17 | 4 16 | syl | ⊢ ( 𝜑 → sup ( 𝑍 , ℝ* , < ) = +∞ ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → sup ( 𝑍 , ℝ* , < ) = +∞ ) |
| 19 | 3 10 15 18 | limsupval2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) = inf ( ( 𝐻 “ 𝑍 ) , ℝ* , < ) ) |
| 20 | imassrn | ⊢ ( 𝐻 “ 𝑍 ) ⊆ ran 𝐻 | |
| 21 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ∈ ℤ ) |
| 22 | 7 | anass1rs | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
| 23 | 22 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ ) |
| 24 | 5 | ltpnfd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) < +∞ ) |
| 25 | 3 1 | limsupgre | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) < +∞ ) → 𝐻 : ℝ ⟶ ℝ ) |
| 26 | 21 23 24 25 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐻 : ℝ ⟶ ℝ ) |
| 27 | 26 | frnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ran 𝐻 ⊆ ℝ ) |
| 28 | 20 27 | sstrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 “ 𝑍 ) ⊆ ℝ ) |
| 29 | 26 | fdmd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → dom 𝐻 = ℝ ) |
| 30 | 29 | ineq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( dom 𝐻 ∩ 𝑍 ) = ( ℝ ∩ 𝑍 ) ) |
| 31 | sseqin2 | ⊢ ( 𝑍 ⊆ ℝ ↔ ( ℝ ∩ 𝑍 ) = 𝑍 ) | |
| 32 | 14 31 | mpbi | ⊢ ( ℝ ∩ 𝑍 ) = 𝑍 |
| 33 | 30 32 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( dom 𝐻 ∩ 𝑍 ) = 𝑍 ) |
| 34 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 35 | 4 34 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 36 | 35 1 | eleqtrrdi | ⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ∈ 𝑍 ) |
| 38 | 37 | ne0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑍 ≠ ∅ ) |
| 39 | 33 38 | eqnetrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( dom 𝐻 ∩ 𝑍 ) ≠ ∅ ) |
| 40 | imadisj | ⊢ ( ( 𝐻 “ 𝑍 ) = ∅ ↔ ( dom 𝐻 ∩ 𝑍 ) = ∅ ) | |
| 41 | 40 | necon3bii | ⊢ ( ( 𝐻 “ 𝑍 ) ≠ ∅ ↔ ( dom 𝐻 ∩ 𝑍 ) ≠ ∅ ) |
| 42 | 39 41 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 “ 𝑍 ) ≠ ∅ ) |
| 43 | 5 | leidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ) |
| 44 | 22 | rexrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → 𝐵 ∈ ℝ* ) |
| 45 | 44 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ* ) |
| 46 | 5 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ* ) |
| 47 | 3 | limsuple | ⊢ ( ( 𝑍 ⊆ ℝ ∧ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ* ∧ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ* ) → ( ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ↔ ∀ 𝑦 ∈ ℝ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑦 ) ) ) |
| 48 | 15 45 46 47 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ↔ ∀ 𝑦 ∈ ℝ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑦 ) ) ) |
| 49 | 43 48 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ∈ ℝ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑦 ) ) |
| 50 | ssralv | ⊢ ( 𝑍 ⊆ ℝ → ( ∀ 𝑦 ∈ ℝ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑦 ) → ∀ 𝑦 ∈ 𝑍 ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑦 ) ) ) | |
| 51 | 14 49 50 | mpsyl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝑍 ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑦 ) ) |
| 52 | 3 | limsupgf | ⊢ 𝐻 : ℝ ⟶ ℝ* |
| 53 | ffn | ⊢ ( 𝐻 : ℝ ⟶ ℝ* → 𝐻 Fn ℝ ) | |
| 54 | 52 53 | ax-mp | ⊢ 𝐻 Fn ℝ |
| 55 | breq2 | ⊢ ( 𝑧 = ( 𝐻 ‘ 𝑦 ) → ( ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ 𝑧 ↔ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑦 ) ) ) | |
| 56 | 55 | ralima | ⊢ ( ( 𝐻 Fn ℝ ∧ 𝑍 ⊆ ℝ ) → ( ∀ 𝑧 ∈ ( 𝐻 “ 𝑍 ) ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ 𝑧 ↔ ∀ 𝑦 ∈ 𝑍 ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑦 ) ) ) |
| 57 | 54 15 56 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ ( 𝐻 “ 𝑍 ) ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ 𝑧 ↔ ∀ 𝑦 ∈ 𝑍 ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑦 ) ) ) |
| 58 | 51 57 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑧 ∈ ( 𝐻 “ 𝑍 ) ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ 𝑧 ) |
| 59 | breq1 | ⊢ ( 𝑦 = ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) → ( 𝑦 ≤ 𝑧 ↔ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ 𝑧 ) ) | |
| 60 | 59 | ralbidv | ⊢ ( 𝑦 = ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) → ( ∀ 𝑧 ∈ ( 𝐻 “ 𝑍 ) 𝑦 ≤ 𝑧 ↔ ∀ 𝑧 ∈ ( 𝐻 “ 𝑍 ) ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ 𝑧 ) ) |
| 61 | 60 | rspcev | ⊢ ( ( ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ∧ ∀ 𝑧 ∈ ( 𝐻 “ 𝑍 ) ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ 𝑧 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( 𝐻 “ 𝑍 ) 𝑦 ≤ 𝑧 ) |
| 62 | 5 58 61 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( 𝐻 “ 𝑍 ) 𝑦 ≤ 𝑧 ) |
| 63 | infxrre | ⊢ ( ( ( 𝐻 “ 𝑍 ) ⊆ ℝ ∧ ( 𝐻 “ 𝑍 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( 𝐻 “ 𝑍 ) 𝑦 ≤ 𝑧 ) → inf ( ( 𝐻 “ 𝑍 ) , ℝ* , < ) = inf ( ( 𝐻 “ 𝑍 ) , ℝ , < ) ) | |
| 64 | 28 42 62 63 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → inf ( ( 𝐻 “ 𝑍 ) , ℝ* , < ) = inf ( ( 𝐻 “ 𝑍 ) , ℝ , < ) ) |
| 65 | df-ima | ⊢ ( 𝐻 “ 𝑍 ) = ran ( 𝐻 ↾ 𝑍 ) | |
| 66 | 26 | feqmptd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐻 = ( 𝑖 ∈ ℝ ↦ ( 𝐻 ‘ 𝑖 ) ) ) |
| 67 | 66 | reseq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ↾ 𝑍 ) = ( ( 𝑖 ∈ ℝ ↦ ( 𝐻 ‘ 𝑖 ) ) ↾ 𝑍 ) ) |
| 68 | resmpt | ⊢ ( 𝑍 ⊆ ℝ → ( ( 𝑖 ∈ ℝ ↦ ( 𝐻 ‘ 𝑖 ) ) ↾ 𝑍 ) = ( 𝑖 ∈ 𝑍 ↦ ( 𝐻 ‘ 𝑖 ) ) ) | |
| 69 | 14 68 | ax-mp | ⊢ ( ( 𝑖 ∈ ℝ ↦ ( 𝐻 ‘ 𝑖 ) ) ↾ 𝑍 ) = ( 𝑖 ∈ 𝑍 ↦ ( 𝐻 ‘ 𝑖 ) ) |
| 70 | 67 69 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ↾ 𝑍 ) = ( 𝑖 ∈ 𝑍 ↦ ( 𝐻 ‘ 𝑖 ) ) ) |
| 71 | 14 | sseli | ⊢ ( 𝑖 ∈ 𝑍 → 𝑖 ∈ ℝ ) |
| 72 | ffvelcdm | ⊢ ( ( 𝐻 : ℝ ⟶ ℝ ∧ 𝑖 ∈ ℝ ) → ( 𝐻 ‘ 𝑖 ) ∈ ℝ ) | |
| 73 | 26 71 72 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑖 ) ∈ ℝ ) |
| 74 | 73 | rexrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑖 ) ∈ ℝ* ) |
| 75 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝜑 ) | |
| 76 | 1 | uztrn2 | ⊢ ( ( 𝑖 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑛 ∈ 𝑍 ) |
| 77 | 76 | adantll | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑛 ∈ 𝑍 ) |
| 78 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑥 ∈ 𝐴 ) | |
| 79 | 75 77 78 7 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝐵 ∈ ℝ ) |
| 80 | 79 | fmpttd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) : ( ℤ≥ ‘ 𝑖 ) ⟶ ℝ ) |
| 81 | 80 | frnd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ⊆ ℝ ) |
| 82 | eqid | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) = ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) | |
| 83 | 82 79 | dmmptd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → dom ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) = ( ℤ≥ ‘ 𝑖 ) ) |
| 84 | simpr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ 𝑍 ) | |
| 85 | 84 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 86 | eluzelz | ⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑖 ∈ ℤ ) | |
| 87 | 85 86 | syl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ ℤ ) |
| 88 | 87 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ ℤ ) |
| 89 | uzid | ⊢ ( 𝑖 ∈ ℤ → 𝑖 ∈ ( ℤ≥ ‘ 𝑖 ) ) | |
| 90 | ne0i | ⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 𝑖 ) → ( ℤ≥ ‘ 𝑖 ) ≠ ∅ ) | |
| 91 | 88 89 90 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑖 ) ≠ ∅ ) |
| 92 | 83 91 | eqnetrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → dom ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ≠ ∅ ) |
| 93 | dm0rn0 | ⊢ ( dom ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) = ∅ ↔ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) = ∅ ) | |
| 94 | 93 | necon3bii | ⊢ ( dom ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ≠ ∅ ↔ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ≠ ∅ ) |
| 95 | 92 94 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ≠ ∅ ) |
| 96 | 85 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 97 | uzss | ⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑖 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 98 | 96 97 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑖 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 99 | 98 1 | sseqtrrdi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑖 ) ⊆ 𝑍 ) |
| 100 | 73 | leidd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑖 ) ≤ ( 𝐻 ‘ 𝑖 ) ) |
| 101 | 14 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → 𝑍 ⊆ ℝ ) |
| 102 | 45 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ* ) |
| 103 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ 𝑍 ) | |
| 104 | 14 103 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ ℝ ) |
| 105 | 3 | limsupgle | ⊢ ( ( ( 𝑍 ⊆ ℝ ∧ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ* ) ∧ 𝑖 ∈ ℝ ∧ ( 𝐻 ‘ 𝑖 ) ∈ ℝ* ) → ( ( 𝐻 ‘ 𝑖 ) ≤ ( 𝐻 ‘ 𝑖 ) ↔ ∀ 𝑘 ∈ 𝑍 ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) ) |
| 106 | 101 102 104 74 105 | syl211anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝐻 ‘ 𝑖 ) ≤ ( 𝐻 ‘ 𝑖 ) ↔ ∀ 𝑘 ∈ 𝑍 ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) ) |
| 107 | 100 106 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ∀ 𝑘 ∈ 𝑍 ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) |
| 108 | ssralv | ⊢ ( ( ℤ≥ ‘ 𝑖 ) ⊆ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) ) | |
| 109 | 99 107 108 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) |
| 110 | 99 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ℤ≥ ‘ 𝑖 ) ⊆ 𝑍 ) |
| 111 | 110 | resmptd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ↾ ( ℤ≥ ‘ 𝑖 ) ) = ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ) |
| 112 | 111 | fveq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ↾ ( ℤ≥ ‘ 𝑖 ) ) ‘ 𝑘 ) = ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) ) |
| 113 | fvres | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) → ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ↾ ( ℤ≥ ‘ 𝑖 ) ) ‘ 𝑘 ) = ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) | |
| 114 | 113 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ↾ ( ℤ≥ ‘ 𝑖 ) ) ‘ 𝑘 ) = ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) |
| 115 | 112 114 | eqtr3d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) = ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) |
| 116 | 115 | breq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ↔ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) |
| 117 | eluzle | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) → 𝑖 ≤ 𝑘 ) | |
| 118 | 117 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑖 ≤ 𝑘 ) |
| 119 | biimt | ⊢ ( 𝑖 ≤ 𝑘 → ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ↔ ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) ) | |
| 120 | 118 119 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ↔ ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) ) |
| 121 | 116 120 | bitrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ↔ ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) ) |
| 122 | 121 | ralbidva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) ) |
| 123 | 109 122 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) |
| 124 | ffn | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) : ( ℤ≥ ‘ 𝑖 ) ⟶ ℝ → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) Fn ( ℤ≥ ‘ 𝑖 ) ) | |
| 125 | breq1 | ⊢ ( 𝑧 = ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) → ( 𝑧 ≤ ( 𝐻 ‘ 𝑖 ) ↔ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) | |
| 126 | 125 | ralrn | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) Fn ( ℤ≥ ‘ 𝑖 ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ ( 𝐻 ‘ 𝑖 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) |
| 127 | 80 124 126 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ ( 𝐻 ‘ 𝑖 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) |
| 128 | 123 127 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ ( 𝐻 ‘ 𝑖 ) ) |
| 129 | brralrspcev | ⊢ ( ( ( 𝐻 ‘ 𝑖 ) ∈ ℝ ∧ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ ( 𝐻 ‘ 𝑖 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) | |
| 130 | 73 128 129 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) |
| 131 | 81 95 130 | suprcld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ∈ ℝ ) |
| 132 | 131 | rexrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ∈ ℝ* ) |
| 133 | 81 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘 ) ) → ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ⊆ ℝ ) |
| 134 | 95 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘 ) ) → ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ≠ ∅ ) |
| 135 | 130 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) |
| 136 | 12 | sseli | ⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
| 137 | eluz | ⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ↔ 𝑖 ≤ 𝑘 ) ) | |
| 138 | 88 136 137 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ↔ 𝑖 ≤ 𝑘 ) ) |
| 139 | 138 | biimprd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝑖 ≤ 𝑘 → 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) ) |
| 140 | 139 | impr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) |
| 141 | 140 115 | syldan | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘 ) ) → ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) = ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) |
| 142 | 80 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘 ) ) → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) : ( ℤ≥ ‘ 𝑖 ) ⟶ ℝ ) |
| 143 | 142 124 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘 ) ) → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) Fn ( ℤ≥ ‘ 𝑖 ) ) |
| 144 | fnfvelrn | ⊢ ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) Fn ( ℤ≥ ‘ 𝑖 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ) | |
| 145 | 143 140 144 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘 ) ) → ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ) |
| 146 | 141 145 | eqeltrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘 ) ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ) |
| 147 | 133 134 135 146 | suprubd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘 ) ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) |
| 148 | 147 | expr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ) |
| 149 | 148 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ∀ 𝑘 ∈ 𝑍 ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ) |
| 150 | 3 | limsupgle | ⊢ ( ( ( 𝑍 ⊆ ℝ ∧ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ* ) ∧ 𝑖 ∈ ℝ ∧ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ∈ ℝ* ) → ( ( 𝐻 ‘ 𝑖 ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ↔ ∀ 𝑘 ∈ 𝑍 ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ) ) |
| 151 | 101 102 104 132 150 | syl211anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝐻 ‘ 𝑖 ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ↔ ∀ 𝑘 ∈ 𝑍 ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ) ) |
| 152 | 149 151 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑖 ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) |
| 153 | suprleub | ⊢ ( ( ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ⊆ ℝ ∧ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ∧ ( 𝐻 ‘ 𝑖 ) ∈ ℝ ) → ( sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ≤ ( 𝐻 ‘ 𝑖 ) ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ ( 𝐻 ‘ 𝑖 ) ) ) | |
| 154 | 81 95 130 73 153 | syl31anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ≤ ( 𝐻 ‘ 𝑖 ) ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ ( 𝐻 ‘ 𝑖 ) ) ) |
| 155 | 128 154 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ≤ ( 𝐻 ‘ 𝑖 ) ) |
| 156 | 74 132 152 155 | xrletrid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑖 ) = sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) |
| 157 | 156 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑖 ∈ 𝑍 ↦ ( 𝐻 ‘ 𝑖 ) ) = ( 𝑖 ∈ 𝑍 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ) |
| 158 | 70 157 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ↾ 𝑍 ) = ( 𝑖 ∈ 𝑍 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ) |
| 159 | 158 | rneqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ran ( 𝐻 ↾ 𝑍 ) = ran ( 𝑖 ∈ 𝑍 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ) |
| 160 | 65 159 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 “ 𝑍 ) = ran ( 𝑖 ∈ 𝑍 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ) |
| 161 | 160 | infeq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → inf ( ( 𝐻 “ 𝑍 ) , ℝ , < ) = inf ( ran ( 𝑖 ∈ 𝑍 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) , ℝ , < ) ) |
| 162 | 19 64 161 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) = inf ( ran ( 𝑖 ∈ 𝑍 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) , ℝ , < ) ) |
| 163 | 162 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ inf ( ran ( 𝑖 ∈ 𝑍 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) , ℝ , < ) ) ) |
| 164 | 2 163 | eqtrid | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐴 ↦ inf ( ran ( 𝑖 ∈ 𝑍 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) , ℝ , < ) ) ) |
| 165 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ inf ( ran ( 𝑖 ∈ 𝑍 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) , ℝ , < ) ) = ( 𝑥 ∈ 𝐴 ↦ inf ( ran ( 𝑖 ∈ 𝑍 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) , ℝ , < ) ) | |
| 166 | eqid | ⊢ ( ℤ≥ ‘ 𝑖 ) = ( ℤ≥ ‘ 𝑖 ) | |
| 167 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) = ( 𝑥 ∈ 𝐴 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) | |
| 168 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝜑 ) | |
| 169 | 76 | adantll | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑛 ∈ 𝑍 ) |
| 170 | 168 169 6 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 171 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ∧ 𝑥 ∈ 𝐴 ) ) → 𝜑 ) | |
| 172 | 76 | ad2ant2lr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ∧ 𝑥 ∈ 𝐴 ) ) → 𝑛 ∈ 𝑍 ) |
| 173 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ∧ 𝑥 ∈ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) | |
| 174 | 171 172 173 7 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ∧ 𝑥 ∈ 𝐴 ) ) → 𝐵 ∈ ℝ ) |
| 175 | 79 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) 𝐵 ∈ ℝ ) |
| 176 | breq1 | ⊢ ( 𝑧 = 𝐵 → ( 𝑧 ≤ 𝑦 ↔ 𝐵 ≤ 𝑦 ) ) | |
| 177 | 82 176 | ralrnmptw | ⊢ ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) 𝐵 ∈ ℝ → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ 𝑦 ↔ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) 𝐵 ≤ 𝑦 ) ) |
| 178 | 175 177 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ 𝑦 ↔ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) 𝐵 ≤ 𝑦 ) ) |
| 179 | 178 | rexbidv | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ 𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) 𝐵 ≤ 𝑦 ) ) |
| 180 | 130 179 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) 𝐵 ≤ 𝑦 ) |
| 181 | 180 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) 𝐵 ≤ 𝑦 ) |
| 182 | 166 167 87 170 174 181 | mbfsup | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ∈ MblFn ) |
| 183 | 131 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐴 ) → sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ∈ ℝ ) |
| 184 | 183 | anasss | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) ) → sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ∈ ℝ ) |
| 185 | 3 | limsuple | ⊢ ( ( 𝑍 ⊆ ℝ ∧ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ* ∧ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ* ) → ( ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ↔ ∀ 𝑖 ∈ ℝ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) |
| 186 | 15 45 46 185 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ↔ ∀ 𝑖 ∈ ℝ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) |
| 187 | 43 186 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑖 ∈ ℝ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑖 ) ) |
| 188 | ssralv | ⊢ ( 𝑍 ⊆ ℝ → ( ∀ 𝑖 ∈ ℝ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑖 ) → ∀ 𝑖 ∈ 𝑍 ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) | |
| 189 | 14 187 188 | mpsyl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑖 ∈ 𝑍 ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑖 ) ) |
| 190 | 156 | breq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑖 ) ↔ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ) |
| 191 | 190 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑖 ∈ 𝑍 ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ 𝑍 ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ) |
| 192 | 189 191 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑖 ∈ 𝑍 ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) |
| 193 | breq1 | ⊢ ( 𝑦 = ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) → ( 𝑦 ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ↔ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ) | |
| 194 | 193 | ralbidv | ⊢ ( 𝑦 = ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) → ( ∀ 𝑖 ∈ 𝑍 𝑦 ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ↔ ∀ 𝑖 ∈ 𝑍 ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ) |
| 195 | 194 | rspcev | ⊢ ( ( ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ∧ ∀ 𝑖 ∈ 𝑍 ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑖 ∈ 𝑍 𝑦 ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) |
| 196 | 5 192 195 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑖 ∈ 𝑍 𝑦 ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) |
| 197 | 1 165 4 182 184 196 | mbfinf | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ inf ( ran ( 𝑖 ∈ 𝑍 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) , ℝ , < ) ) ∈ MblFn ) |
| 198 | 164 197 | eqeltrd | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) |