This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real and extended real infima match when the real infimum exists. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 5-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infxrre | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ* , < ) = inf ( 𝐴 , ℝ , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → 𝐴 ⊆ ℝ ) | |
| 2 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 3 | 1 2 | sstrdi | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → 𝐴 ⊆ ℝ* ) |
| 4 | infxrcl | ⊢ ( 𝐴 ⊆ ℝ* → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 6 | infrecl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ , < ) ∈ ℝ ) | |
| 7 | 6 | rexrd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ , < ) ∈ ℝ* ) |
| 8 | 5 | xrleidd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ* , < ) ≤ inf ( 𝐴 , ℝ* , < ) ) |
| 9 | infxrgelb | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) → ( inf ( 𝐴 , ℝ* , < ) ≤ inf ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 inf ( 𝐴 , ℝ* , < ) ≤ 𝑥 ) ) | |
| 10 | 3 5 9 | syl2anc | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( inf ( 𝐴 , ℝ* , < ) ≤ inf ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 inf ( 𝐴 , ℝ* , < ) ≤ 𝑥 ) ) |
| 11 | simp2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → 𝐴 ≠ ∅ ) | |
| 12 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐴 ) | |
| 13 | 11 12 | sylib | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∃ 𝑧 𝑧 ∈ 𝐴 ) |
| 14 | 5 | adantr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝑧 ∈ 𝐴 ) → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 15 | 1 | sselda | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℝ ) |
| 16 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 17 | 16 | a1i | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → -∞ ∈ ℝ* ) |
| 18 | 6 | mnfltd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → -∞ < inf ( 𝐴 , ℝ , < ) ) |
| 19 | 6 | leidd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ , < ) ≤ inf ( 𝐴 , ℝ , < ) ) |
| 20 | infregelb | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ inf ( 𝐴 , ℝ , < ) ∈ ℝ ) → ( inf ( 𝐴 , ℝ , < ) ≤ inf ( 𝐴 , ℝ , < ) ↔ ∀ 𝑥 ∈ 𝐴 inf ( 𝐴 , ℝ , < ) ≤ 𝑥 ) ) | |
| 21 | 6 20 | mpdan | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( inf ( 𝐴 , ℝ , < ) ≤ inf ( 𝐴 , ℝ , < ) ↔ ∀ 𝑥 ∈ 𝐴 inf ( 𝐴 , ℝ , < ) ≤ 𝑥 ) ) |
| 22 | infxrgelb | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ inf ( 𝐴 , ℝ , < ) ∈ ℝ* ) → ( inf ( 𝐴 , ℝ , < ) ≤ inf ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 inf ( 𝐴 , ℝ , < ) ≤ 𝑥 ) ) | |
| 23 | 3 7 22 | syl2anc | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( inf ( 𝐴 , ℝ , < ) ≤ inf ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 inf ( 𝐴 , ℝ , < ) ≤ 𝑥 ) ) |
| 24 | 21 23 | bitr4d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( inf ( 𝐴 , ℝ , < ) ≤ inf ( 𝐴 , ℝ , < ) ↔ inf ( 𝐴 , ℝ , < ) ≤ inf ( 𝐴 , ℝ* , < ) ) ) |
| 25 | 19 24 | mpbid | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ , < ) ≤ inf ( 𝐴 , ℝ* , < ) ) |
| 26 | 17 7 5 18 25 | xrltletrd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → -∞ < inf ( 𝐴 , ℝ* , < ) ) |
| 27 | 26 | adantr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝑧 ∈ 𝐴 ) → -∞ < inf ( 𝐴 , ℝ* , < ) ) |
| 28 | infxrlb | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑧 ∈ 𝐴 ) → inf ( 𝐴 , ℝ* , < ) ≤ 𝑧 ) | |
| 29 | 3 28 | sylan | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝑧 ∈ 𝐴 ) → inf ( 𝐴 , ℝ* , < ) ≤ 𝑧 ) |
| 30 | xrre | ⊢ ( ( ( inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ∧ 𝑧 ∈ ℝ ) ∧ ( -∞ < inf ( 𝐴 , ℝ* , < ) ∧ inf ( 𝐴 , ℝ* , < ) ≤ 𝑧 ) ) → inf ( 𝐴 , ℝ* , < ) ∈ ℝ ) | |
| 31 | 14 15 27 29 30 | syl22anc | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝑧 ∈ 𝐴 ) → inf ( 𝐴 , ℝ* , < ) ∈ ℝ ) |
| 32 | 13 31 | exlimddv | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ* , < ) ∈ ℝ ) |
| 33 | infregelb | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ inf ( 𝐴 , ℝ* , < ) ∈ ℝ ) → ( inf ( 𝐴 , ℝ* , < ) ≤ inf ( 𝐴 , ℝ , < ) ↔ ∀ 𝑥 ∈ 𝐴 inf ( 𝐴 , ℝ* , < ) ≤ 𝑥 ) ) | |
| 34 | 32 33 | mpdan | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( inf ( 𝐴 , ℝ* , < ) ≤ inf ( 𝐴 , ℝ , < ) ↔ ∀ 𝑥 ∈ 𝐴 inf ( 𝐴 , ℝ* , < ) ≤ 𝑥 ) ) |
| 35 | 10 34 | bitr4d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( inf ( 𝐴 , ℝ* , < ) ≤ inf ( 𝐴 , ℝ* , < ) ↔ inf ( 𝐴 , ℝ* , < ) ≤ inf ( 𝐴 , ℝ , < ) ) ) |
| 36 | 8 35 | mpbid | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ* , < ) ≤ inf ( 𝐴 , ℝ , < ) ) |
| 37 | 5 7 36 25 | xrletrid | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ* , < ) = inf ( 𝐴 , ℝ , < ) ) |