This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper set of integers is unbounded above. (Contributed by Mario Carneiro, 7-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uzsup.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| Assertion | uzsup | ⊢ ( 𝑀 ∈ ℤ → sup ( 𝑍 , ℝ* , < ) = +∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzsup.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | simpl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → 𝑀 ∈ ℤ ) | |
| 3 | flcl | ⊢ ( 𝑥 ∈ ℝ → ( ⌊ ‘ 𝑥 ) ∈ ℤ ) | |
| 4 | 3 | peano2zd | ⊢ ( 𝑥 ∈ ℝ → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℤ ) |
| 5 | id | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℤ ) | |
| 6 | ifcl | ⊢ ( ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) , ( ( ⌊ ‘ 𝑥 ) + 1 ) , 𝑀 ) ∈ ℤ ) | |
| 7 | 4 5 6 | syl2anr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) , ( ( ⌊ ‘ 𝑥 ) + 1 ) , 𝑀 ) ∈ ℤ ) |
| 8 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 9 | reflcl | ⊢ ( 𝑥 ∈ ℝ → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) | |
| 10 | peano2re | ⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ℝ → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℝ ) | |
| 11 | 9 10 | syl | ⊢ ( 𝑥 ∈ ℝ → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℝ ) |
| 12 | max1 | ⊢ ( ( 𝑀 ∈ ℝ ∧ ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) , ( ( ⌊ ‘ 𝑥 ) + 1 ) , 𝑀 ) ) | |
| 13 | 8 11 12 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) , ( ( ⌊ ‘ 𝑥 ) + 1 ) , 𝑀 ) ) |
| 14 | eluz2 | ⊢ ( if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) , ( ( ⌊ ‘ 𝑥 ) + 1 ) , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) , ( ( ⌊ ‘ 𝑥 ) + 1 ) , 𝑀 ) ∈ ℤ ∧ 𝑀 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) , ( ( ⌊ ‘ 𝑥 ) + 1 ) , 𝑀 ) ) ) | |
| 15 | 2 7 13 14 | syl3anbrc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) , ( ( ⌊ ‘ 𝑥 ) + 1 ) , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 16 | 15 1 | eleqtrrdi | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) , ( ( ⌊ ‘ 𝑥 ) + 1 ) , 𝑀 ) ∈ 𝑍 ) |
| 17 | simpr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) | |
| 18 | 11 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℝ ) |
| 19 | 7 | zred | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) , ( ( ⌊ ‘ 𝑥 ) + 1 ) , 𝑀 ) ∈ ℝ ) |
| 20 | fllep1 | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) | |
| 21 | 20 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → 𝑥 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) |
| 22 | max2 | ⊢ ( ( 𝑀 ∈ ℝ ∧ ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℝ ) → ( ( ⌊ ‘ 𝑥 ) + 1 ) ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) , ( ( ⌊ ‘ 𝑥 ) + 1 ) , 𝑀 ) ) | |
| 23 | 8 11 22 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ 𝑥 ) + 1 ) ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) , ( ( ⌊ ‘ 𝑥 ) + 1 ) , 𝑀 ) ) |
| 24 | 17 18 19 21 23 | letrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → 𝑥 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) , ( ( ⌊ ‘ 𝑥 ) + 1 ) , 𝑀 ) ) |
| 25 | breq2 | ⊢ ( 𝑛 = if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) , ( ( ⌊ ‘ 𝑥 ) + 1 ) , 𝑀 ) → ( 𝑥 ≤ 𝑛 ↔ 𝑥 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) , ( ( ⌊ ‘ 𝑥 ) + 1 ) , 𝑀 ) ) ) | |
| 26 | 25 | rspcev | ⊢ ( ( if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) , ( ( ⌊ ‘ 𝑥 ) + 1 ) , 𝑀 ) ∈ 𝑍 ∧ 𝑥 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) , ( ( ⌊ ‘ 𝑥 ) + 1 ) , 𝑀 ) ) → ∃ 𝑛 ∈ 𝑍 𝑥 ≤ 𝑛 ) |
| 27 | 16 24 26 | syl2anc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ∃ 𝑛 ∈ 𝑍 𝑥 ≤ 𝑛 ) |
| 28 | 27 | ralrimiva | ⊢ ( 𝑀 ∈ ℤ → ∀ 𝑥 ∈ ℝ ∃ 𝑛 ∈ 𝑍 𝑥 ≤ 𝑛 ) |
| 29 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 30 | 1 29 | eqsstri | ⊢ 𝑍 ⊆ ℤ |
| 31 | zssre | ⊢ ℤ ⊆ ℝ | |
| 32 | 30 31 | sstri | ⊢ 𝑍 ⊆ ℝ |
| 33 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 34 | 32 33 | sstri | ⊢ 𝑍 ⊆ ℝ* |
| 35 | supxrunb1 | ⊢ ( 𝑍 ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑛 ∈ 𝑍 𝑥 ≤ 𝑛 ↔ sup ( 𝑍 , ℝ* , < ) = +∞ ) ) | |
| 36 | 34 35 | ax-mp | ⊢ ( ∀ 𝑥 ∈ ℝ ∃ 𝑛 ∈ 𝑍 𝑥 ≤ 𝑛 ↔ sup ( 𝑍 , ℝ* , < ) = +∞ ) |
| 37 | 28 36 | sylib | ⊢ ( 𝑀 ∈ ℤ → sup ( 𝑍 , ℝ* , < ) = +∞ ) |