This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 12-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | limsupval.1 | ⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | |
| Assertion | limsuple | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐴 ≤ ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑗 ∈ ℝ 𝐴 ≤ ( 𝐺 ‘ 𝑗 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupval.1 | ⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | |
| 2 | simp2 | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → 𝐹 : 𝐵 ⟶ ℝ* ) | |
| 3 | reex | ⊢ ℝ ∈ V | |
| 4 | 3 | ssex | ⊢ ( 𝐵 ⊆ ℝ → 𝐵 ∈ V ) |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → 𝐵 ∈ V ) |
| 6 | xrex | ⊢ ℝ* ∈ V | |
| 7 | 6 | a1i | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → ℝ* ∈ V ) |
| 8 | fex2 | ⊢ ( ( 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐵 ∈ V ∧ ℝ* ∈ V ) → 𝐹 ∈ V ) | |
| 9 | 2 5 7 8 | syl3anc | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → 𝐹 ∈ V ) |
| 10 | 1 | limsupval | ⊢ ( 𝐹 ∈ V → ( lim sup ‘ 𝐹 ) = inf ( ran 𝐺 , ℝ* , < ) ) |
| 11 | 9 10 | syl | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( lim sup ‘ 𝐹 ) = inf ( ran 𝐺 , ℝ* , < ) ) |
| 12 | 11 | breq2d | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐴 ≤ ( lim sup ‘ 𝐹 ) ↔ 𝐴 ≤ inf ( ran 𝐺 , ℝ* , < ) ) ) |
| 13 | 1 | limsupgf | ⊢ 𝐺 : ℝ ⟶ ℝ* |
| 14 | frn | ⊢ ( 𝐺 : ℝ ⟶ ℝ* → ran 𝐺 ⊆ ℝ* ) | |
| 15 | 13 14 | ax-mp | ⊢ ran 𝐺 ⊆ ℝ* |
| 16 | simp3 | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → 𝐴 ∈ ℝ* ) | |
| 17 | infxrgelb | ⊢ ( ( ran 𝐺 ⊆ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐴 ≤ inf ( ran 𝐺 , ℝ* , < ) ↔ ∀ 𝑥 ∈ ran 𝐺 𝐴 ≤ 𝑥 ) ) | |
| 18 | 15 16 17 | sylancr | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐴 ≤ inf ( ran 𝐺 , ℝ* , < ) ↔ ∀ 𝑥 ∈ ran 𝐺 𝐴 ≤ 𝑥 ) ) |
| 19 | ffn | ⊢ ( 𝐺 : ℝ ⟶ ℝ* → 𝐺 Fn ℝ ) | |
| 20 | 13 19 | ax-mp | ⊢ 𝐺 Fn ℝ |
| 21 | breq2 | ⊢ ( 𝑥 = ( 𝐺 ‘ 𝑗 ) → ( 𝐴 ≤ 𝑥 ↔ 𝐴 ≤ ( 𝐺 ‘ 𝑗 ) ) ) | |
| 22 | 21 | ralrn | ⊢ ( 𝐺 Fn ℝ → ( ∀ 𝑥 ∈ ran 𝐺 𝐴 ≤ 𝑥 ↔ ∀ 𝑗 ∈ ℝ 𝐴 ≤ ( 𝐺 ‘ 𝑗 ) ) ) |
| 23 | 20 22 | ax-mp | ⊢ ( ∀ 𝑥 ∈ ran 𝐺 𝐴 ≤ 𝑥 ↔ ∀ 𝑗 ∈ ℝ 𝐴 ≤ ( 𝐺 ‘ 𝑗 ) ) |
| 24 | 18 23 | bitrdi | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐴 ≤ inf ( ran 𝐺 , ℝ* , < ) ↔ ∀ 𝑗 ∈ ℝ 𝐴 ≤ ( 𝐺 ‘ 𝑗 ) ) ) |
| 25 | 12 24 | bitrd | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐴 ≤ ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑗 ∈ ℝ 𝐴 ≤ ( 𝐺 ‘ 𝑗 ) ) ) |