This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The superior limit, relativized to an unbounded set. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 12-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limsupval.1 | ⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | |
| limsupval2.1 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | ||
| limsupval2.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | ||
| limsupval2.3 | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) | ||
| Assertion | limsupval2 | ⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupval.1 | ⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | |
| 2 | limsupval2.1 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 3 | limsupval2.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 4 | limsupval2.3 | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) | |
| 5 | 1 | limsupval | ⊢ ( 𝐹 ∈ 𝑉 → ( lim sup ‘ 𝐹 ) = inf ( ran 𝐺 , ℝ* , < ) ) |
| 6 | 2 5 | syl | ⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ran 𝐺 , ℝ* , < ) ) |
| 7 | imassrn | ⊢ ( 𝐺 “ 𝐴 ) ⊆ ran 𝐺 | |
| 8 | 1 | limsupgf | ⊢ 𝐺 : ℝ ⟶ ℝ* |
| 9 | frn | ⊢ ( 𝐺 : ℝ ⟶ ℝ* → ran 𝐺 ⊆ ℝ* ) | |
| 10 | 8 9 | ax-mp | ⊢ ran 𝐺 ⊆ ℝ* |
| 11 | infxrlb | ⊢ ( ( ran 𝐺 ⊆ ℝ* ∧ 𝑥 ∈ ran 𝐺 ) → inf ( ran 𝐺 , ℝ* , < ) ≤ 𝑥 ) | |
| 12 | 11 | ralrimiva | ⊢ ( ran 𝐺 ⊆ ℝ* → ∀ 𝑥 ∈ ran 𝐺 inf ( ran 𝐺 , ℝ* , < ) ≤ 𝑥 ) |
| 13 | 10 12 | mp1i | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ran 𝐺 inf ( ran 𝐺 , ℝ* , < ) ≤ 𝑥 ) |
| 14 | ssralv | ⊢ ( ( 𝐺 “ 𝐴 ) ⊆ ran 𝐺 → ( ∀ 𝑥 ∈ ran 𝐺 inf ( ran 𝐺 , ℝ* , < ) ≤ 𝑥 → ∀ 𝑥 ∈ ( 𝐺 “ 𝐴 ) inf ( ran 𝐺 , ℝ* , < ) ≤ 𝑥 ) ) | |
| 15 | 7 13 14 | mpsyl | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐺 “ 𝐴 ) inf ( ran 𝐺 , ℝ* , < ) ≤ 𝑥 ) |
| 16 | 7 10 | sstri | ⊢ ( 𝐺 “ 𝐴 ) ⊆ ℝ* |
| 17 | infxrcl | ⊢ ( ran 𝐺 ⊆ ℝ* → inf ( ran 𝐺 , ℝ* , < ) ∈ ℝ* ) | |
| 18 | 10 17 | ax-mp | ⊢ inf ( ran 𝐺 , ℝ* , < ) ∈ ℝ* |
| 19 | infxrgelb | ⊢ ( ( ( 𝐺 “ 𝐴 ) ⊆ ℝ* ∧ inf ( ran 𝐺 , ℝ* , < ) ∈ ℝ* ) → ( inf ( ran 𝐺 , ℝ* , < ) ≤ inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ↔ ∀ 𝑥 ∈ ( 𝐺 “ 𝐴 ) inf ( ran 𝐺 , ℝ* , < ) ≤ 𝑥 ) ) | |
| 20 | 16 18 19 | mp2an | ⊢ ( inf ( ran 𝐺 , ℝ* , < ) ≤ inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ↔ ∀ 𝑥 ∈ ( 𝐺 “ 𝐴 ) inf ( ran 𝐺 , ℝ* , < ) ≤ 𝑥 ) |
| 21 | 15 20 | sylibr | ⊢ ( 𝜑 → inf ( ran 𝐺 , ℝ* , < ) ≤ inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ) |
| 22 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 23 | 3 22 | sstrdi | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
| 24 | supxrunb1 | ⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑛 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑛 ≤ 𝑥 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) | |
| 25 | 23 24 | syl | ⊢ ( 𝜑 → ( ∀ 𝑛 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑛 ≤ 𝑥 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
| 26 | 4 25 | mpbird | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑛 ≤ 𝑥 ) |
| 27 | infxrcl | ⊢ ( ( 𝐺 “ 𝐴 ) ⊆ ℝ* → inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ∈ ℝ* ) | |
| 28 | 16 27 | mp1i | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ∈ ℝ* ) |
| 29 | 3 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 30 | 29 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
| 31 | 8 | ffvelcdmi | ⊢ ( 𝑥 ∈ ℝ → ( 𝐺 ‘ 𝑥 ) ∈ ℝ* ) |
| 32 | 30 31 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ* ) |
| 33 | 8 | ffvelcdmi | ⊢ ( 𝑛 ∈ ℝ → ( 𝐺 ‘ 𝑛 ) ∈ ℝ* ) |
| 34 | 33 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ* ) |
| 35 | ffn | ⊢ ( 𝐺 : ℝ ⟶ ℝ* → 𝐺 Fn ℝ ) | |
| 36 | 8 35 | mp1i | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → 𝐺 Fn ℝ ) |
| 37 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → 𝐴 ⊆ ℝ ) |
| 38 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → 𝑥 ∈ 𝐴 ) | |
| 39 | fnfvima | ⊢ ( ( 𝐺 Fn ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ ( 𝐺 “ 𝐴 ) ) | |
| 40 | 36 37 38 39 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( 𝐺 “ 𝐴 ) ) |
| 41 | infxrlb | ⊢ ( ( ( 𝐺 “ 𝐴 ) ⊆ ℝ* ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( 𝐺 “ 𝐴 ) ) → inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ≤ ( 𝐺 ‘ 𝑥 ) ) | |
| 42 | 16 40 41 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 43 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → 𝑛 ∈ ℝ ) | |
| 44 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → 𝑛 ≤ 𝑥 ) | |
| 45 | limsupgord | ⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑛 ≤ 𝑥 ) → sup ( ( ( 𝐹 “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | |
| 46 | 43 30 44 45 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → sup ( ( ( 𝐹 “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 47 | 1 | limsupgval | ⊢ ( 𝑥 ∈ ℝ → ( 𝐺 ‘ 𝑥 ) = sup ( ( ( 𝐹 “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 48 | 30 47 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → ( 𝐺 ‘ 𝑥 ) = sup ( ( ( 𝐹 “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 49 | 1 | limsupgval | ⊢ ( 𝑛 ∈ ℝ → ( 𝐺 ‘ 𝑛 ) = sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 50 | 49 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → ( 𝐺 ‘ 𝑛 ) = sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 51 | 46 48 50 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑛 ) ) |
| 52 | 28 32 34 42 51 | xrletrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ≤ ( 𝐺 ‘ 𝑛 ) ) |
| 53 | 52 | rexlimdvaa | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) → ( ∃ 𝑥 ∈ 𝐴 𝑛 ≤ 𝑥 → inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ≤ ( 𝐺 ‘ 𝑛 ) ) ) |
| 54 | 53 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑛 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑛 ≤ 𝑥 → ∀ 𝑛 ∈ ℝ inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ≤ ( 𝐺 ‘ 𝑛 ) ) ) |
| 55 | 26 54 | mpd | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℝ inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ≤ ( 𝐺 ‘ 𝑛 ) ) |
| 56 | 8 35 | ax-mp | ⊢ 𝐺 Fn ℝ |
| 57 | breq2 | ⊢ ( 𝑥 = ( 𝐺 ‘ 𝑛 ) → ( inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ≤ 𝑥 ↔ inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ≤ ( 𝐺 ‘ 𝑛 ) ) ) | |
| 58 | 57 | ralrn | ⊢ ( 𝐺 Fn ℝ → ( ∀ 𝑥 ∈ ran 𝐺 inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ≤ 𝑥 ↔ ∀ 𝑛 ∈ ℝ inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ≤ ( 𝐺 ‘ 𝑛 ) ) ) |
| 59 | 56 58 | ax-mp | ⊢ ( ∀ 𝑥 ∈ ran 𝐺 inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ≤ 𝑥 ↔ ∀ 𝑛 ∈ ℝ inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ≤ ( 𝐺 ‘ 𝑛 ) ) |
| 60 | 55 59 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ran 𝐺 inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ≤ 𝑥 ) |
| 61 | 16 27 | ax-mp | ⊢ inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ∈ ℝ* |
| 62 | infxrgelb | ⊢ ( ( ran 𝐺 ⊆ ℝ* ∧ inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ∈ ℝ* ) → ( inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ≤ inf ( ran 𝐺 , ℝ* , < ) ↔ ∀ 𝑥 ∈ ran 𝐺 inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ≤ 𝑥 ) ) | |
| 63 | 10 61 62 | mp2an | ⊢ ( inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ≤ inf ( ran 𝐺 , ℝ* , < ) ↔ ∀ 𝑥 ∈ ran 𝐺 inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ≤ 𝑥 ) |
| 64 | 60 63 | sylibr | ⊢ ( 𝜑 → inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ≤ inf ( ran 𝐺 , ℝ* , < ) ) |
| 65 | xrletri3 | ⊢ ( ( inf ( ran 𝐺 , ℝ* , < ) ∈ ℝ* ∧ inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ∈ ℝ* ) → ( inf ( ran 𝐺 , ℝ* , < ) = inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ↔ ( inf ( ran 𝐺 , ℝ* , < ) ≤ inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ∧ inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ≤ inf ( ran 𝐺 , ℝ* , < ) ) ) ) | |
| 66 | 18 61 65 | mp2an | ⊢ ( inf ( ran 𝐺 , ℝ* , < ) = inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ↔ ( inf ( ran 𝐺 , ℝ* , < ) ≤ inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ∧ inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ≤ inf ( ran 𝐺 , ℝ* , < ) ) ) |
| 67 | 21 64 66 | sylanbrc | ⊢ ( 𝜑 → inf ( ran 𝐺 , ℝ* , < ) = inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ) |
| 68 | 6 67 | eqtrd | ⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ) |