This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The pointwise limit of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbflim.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| mbflim.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| mbflim.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ 𝐶 ) | ||
| mbflim.5 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | ||
| mbflimlem.6 | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) ) → 𝐵 ∈ ℝ ) | ||
| Assertion | mbflimlem | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbflim.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | mbflim.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | mbflim.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ 𝐶 ) | |
| 4 | mbflim.5 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | |
| 5 | mbflimlem.6 | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) ) → 𝐵 ∈ ℝ ) | |
| 6 | 5 | anass1rs | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
| 7 | 6 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ ) |
| 8 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ∈ ℤ ) |
| 9 | climrel | ⊢ Rel ⇝ | |
| 10 | 9 | releldmi | ⊢ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ 𝐶 → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) |
| 11 | 3 10 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) |
| 12 | 1 | climcau | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑗 ) − ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) ) < 𝑦 ) |
| 13 | 8 11 12 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑗 ) − ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) ) < 𝑦 ) |
| 14 | 1 7 13 | caurcvg | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ) |
| 15 | climuni | ⊢ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ∧ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ 𝐶 ) → ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) = 𝐶 ) | |
| 16 | 14 3 15 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) = 𝐶 ) |
| 17 | 16 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 18 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ) | |
| 19 | eqid | ⊢ ( 𝑚 ∈ ℝ ↦ sup ( ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) “ ( 𝑚 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑚 ∈ ℝ ↦ sup ( ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) “ ( 𝑚 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | |
| 20 | 7 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) |
| 21 | 1 8 14 20 | climrecl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) |
| 22 | 1 18 19 2 21 4 5 | mbflimsup | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ) ∈ MblFn ) |
| 23 | 17 22 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |