This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mbfi1fseq . Verify that G converges pointwise to F , and wrap up the existential quantifier. (Contributed by Mario Carneiro, 16-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfi1fseq.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| mbfi1fseq.2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | ||
| mbfi1fseq.3 | ⊢ 𝐽 = ( 𝑚 ∈ ℕ , 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ) | ||
| mbfi1fseq.4 | ⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 , ( 𝑚 𝐽 𝑥 ) , 𝑚 ) , 0 ) ) ) | ||
| Assertion | mbfi1fseqlem6 | ⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfi1fseq.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| 2 | mbfi1fseq.2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| 3 | mbfi1fseq.3 | ⊢ 𝐽 = ( 𝑚 ∈ ℕ , 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ) | |
| 4 | mbfi1fseq.4 | ⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 , ( 𝑚 𝐽 𝑥 ) , 𝑚 ) , 0 ) ) ) | |
| 5 | 1 2 3 4 | mbfi1fseqlem4 | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ dom ∫1 ) |
| 6 | 1 2 3 4 | mbfi1fseqlem5 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 0𝑝 ∘r ≤ ( 𝐺 ‘ 𝑛 ) ∧ ( 𝐺 ‘ 𝑛 ) ∘r ≤ ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 7 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝐺 ‘ 𝑛 ) ∧ ( 𝐺 ‘ 𝑛 ) ∘r ≤ ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 8 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) | |
| 9 | 8 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
| 10 | 9 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( abs ‘ 𝑥 ) ∈ ℝ ) |
| 11 | 2 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 12 | elrege0 | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 13 | 11 12 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 14 | 13 | simpld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 15 | 10 14 | readdcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 16 | arch | ⊢ ( ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ → ∃ 𝑘 ∈ ℕ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑘 ∈ ℕ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) |
| 18 | eqid | ⊢ ( ℤ≥ ‘ 𝑘 ) = ( ℤ≥ ‘ 𝑘 ) | |
| 19 | nnz | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) | |
| 20 | 19 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) → 𝑘 ∈ ℤ ) |
| 21 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 22 | 1zzd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 1 ∈ ℤ ) | |
| 23 | halfcn | ⊢ ( 1 / 2 ) ∈ ℂ | |
| 24 | 23 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 1 / 2 ) ∈ ℂ ) |
| 25 | halfre | ⊢ ( 1 / 2 ) ∈ ℝ | |
| 26 | halfge0 | ⊢ 0 ≤ ( 1 / 2 ) | |
| 27 | absid | ⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 0 ≤ ( 1 / 2 ) ) → ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 ) ) | |
| 28 | 25 26 27 | mp2an | ⊢ ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 ) |
| 29 | halflt1 | ⊢ ( 1 / 2 ) < 1 | |
| 30 | 28 29 | eqbrtri | ⊢ ( abs ‘ ( 1 / 2 ) ) < 1 |
| 31 | 30 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( abs ‘ ( 1 / 2 ) ) < 1 ) |
| 32 | 24 31 | expcnv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ⇝ 0 ) |
| 33 | 14 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 34 | nnex | ⊢ ℕ ∈ V | |
| 35 | 34 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ∈ V |
| 36 | 35 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ∈ V ) |
| 37 | nnnn0 | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ0 ) | |
| 38 | 37 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ0 ) |
| 39 | oveq2 | ⊢ ( 𝑛 = 𝑗 → ( ( 1 / 2 ) ↑ 𝑛 ) = ( ( 1 / 2 ) ↑ 𝑗 ) ) | |
| 40 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) | |
| 41 | ovex | ⊢ ( ( 1 / 2 ) ↑ 𝑗 ) ∈ V | |
| 42 | 39 40 41 | fvmpt | ⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑗 ) = ( ( 1 / 2 ) ↑ 𝑗 ) ) |
| 43 | 38 42 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑗 ) = ( ( 1 / 2 ) ↑ 𝑗 ) ) |
| 44 | expcl | ⊢ ( ( ( 1 / 2 ) ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 / 2 ) ↑ 𝑗 ) ∈ ℂ ) | |
| 45 | 23 38 44 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 1 / 2 ) ↑ 𝑗 ) ∈ ℂ ) |
| 46 | 43 45 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑗 ) ∈ ℂ ) |
| 47 | 39 | oveq2d | ⊢ ( 𝑛 = 𝑗 → ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) = ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑗 ) ) ) |
| 48 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) | |
| 49 | ovex | ⊢ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑗 ) ) ∈ V | |
| 50 | 47 48 49 | fvmpt | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑗 ) ) ) |
| 51 | 50 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑗 ) ) ) |
| 52 | 43 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑥 ) − ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑗 ) ) = ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑗 ) ) ) |
| 53 | 51 52 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑥 ) − ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑗 ) ) ) |
| 54 | 21 22 32 33 36 46 53 | climsubc2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ⇝ ( ( 𝐹 ‘ 𝑥 ) − 0 ) ) |
| 55 | 33 | subid1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) − 0 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 56 | 54 55 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) |
| 57 | 56 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) |
| 58 | 34 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ V |
| 59 | 58 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ V ) |
| 60 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) → 𝑘 ∈ ℕ ) | |
| 61 | eluznn | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑗 ∈ ℕ ) | |
| 62 | 60 61 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑗 ∈ ℕ ) |
| 63 | 62 50 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑗 ) ) ) |
| 64 | 14 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 65 | 62 37 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑗 ∈ ℕ0 ) |
| 66 | reexpcl | ⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 / 2 ) ↑ 𝑗 ) ∈ ℝ ) | |
| 67 | 25 65 66 | sylancr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 1 / 2 ) ↑ 𝑗 ) ∈ ℝ ) |
| 68 | 64 67 | resubcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑗 ) ) ∈ ℝ ) |
| 69 | 63 68 | eqeltrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 𝑗 ) ∈ ℝ ) |
| 70 | fveq2 | ⊢ ( 𝑛 = 𝑗 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑗 ) ) | |
| 71 | 70 | fveq1d | ⊢ ( 𝑛 = 𝑗 → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 72 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) | |
| 73 | fvex | ⊢ ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑥 ) ∈ V | |
| 74 | 71 72 73 | fvmpt | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) = ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 75 | 62 74 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) = ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 76 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝐺 : ℕ ⟶ dom ∫1 ) |
| 77 | 76 62 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐺 ‘ 𝑗 ) ∈ dom ∫1 ) |
| 78 | i1ff | ⊢ ( ( 𝐺 ‘ 𝑗 ) ∈ dom ∫1 → ( 𝐺 ‘ 𝑗 ) : ℝ ⟶ ℝ ) | |
| 79 | 77 78 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐺 ‘ 𝑗 ) : ℝ ⟶ ℝ ) |
| 80 | 8 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑥 ∈ ℝ ) |
| 81 | 79 80 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ℝ ) |
| 82 | 75 81 | eqeltrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ∈ ℝ ) |
| 83 | 33 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 84 | 2nn | ⊢ 2 ∈ ℕ | |
| 85 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ 𝑗 ) ∈ ℕ ) | |
| 86 | 84 65 85 | sylancr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 2 ↑ 𝑗 ) ∈ ℕ ) |
| 87 | 86 | nnred | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 2 ↑ 𝑗 ) ∈ ℝ ) |
| 88 | 87 | recnd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 2 ↑ 𝑗 ) ∈ ℂ ) |
| 89 | 86 | nnne0d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 2 ↑ 𝑗 ) ≠ 0 ) |
| 90 | 83 88 89 | divcan4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) / ( 2 ↑ 𝑗 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 91 | 90 | eqcomd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐹 ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) / ( 2 ↑ 𝑗 ) ) ) |
| 92 | 2cnd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 2 ∈ ℂ ) | |
| 93 | 2ne0 | ⊢ 2 ≠ 0 | |
| 94 | 93 | a1i | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 2 ≠ 0 ) |
| 95 | eluzelz | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) → 𝑗 ∈ ℤ ) | |
| 96 | 95 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑗 ∈ ℤ ) |
| 97 | 92 94 96 | exprecd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 1 / 2 ) ↑ 𝑗 ) = ( 1 / ( 2 ↑ 𝑗 ) ) ) |
| 98 | 91 97 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑗 ) ) = ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) / ( 2 ↑ 𝑗 ) ) − ( 1 / ( 2 ↑ 𝑗 ) ) ) ) |
| 99 | 64 87 | remulcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ∈ ℝ ) |
| 100 | 99 | recnd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ∈ ℂ ) |
| 101 | 1cnd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 1 ∈ ℂ ) | |
| 102 | 100 101 88 89 | divsubdird | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) − 1 ) / ( 2 ↑ 𝑗 ) ) = ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) / ( 2 ↑ 𝑗 ) ) − ( 1 / ( 2 ↑ 𝑗 ) ) ) ) |
| 103 | 98 102 | eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑗 ) ) = ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) − 1 ) / ( 2 ↑ 𝑗 ) ) ) |
| 104 | fllep1 | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ∈ ℝ → ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) + 1 ) ) | |
| 105 | 99 104 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) + 1 ) ) |
| 106 | 1red | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 1 ∈ ℝ ) | |
| 107 | reflcl | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ∈ ℝ ) | |
| 108 | 99 107 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ∈ ℝ ) |
| 109 | 99 106 108 | lesubaddd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) − 1 ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) + 1 ) ) ) |
| 110 | 105 109 | mpbird | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) − 1 ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ) |
| 111 | peano2rem | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ∈ ℝ → ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) − 1 ) ∈ ℝ ) | |
| 112 | 99 111 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) − 1 ) ∈ ℝ ) |
| 113 | 86 | nngt0d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 0 < ( 2 ↑ 𝑗 ) ) |
| 114 | lediv1 | ⊢ ( ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) − 1 ) ∈ ℝ ∧ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ∈ ℝ ∧ ( ( 2 ↑ 𝑗 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑗 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) − 1 ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ↔ ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) − 1 ) / ( 2 ↑ 𝑗 ) ) ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) ) | |
| 115 | 112 108 87 113 114 | syl112anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) − 1 ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ↔ ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) − 1 ) / ( 2 ↑ 𝑗 ) ) ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) ) |
| 116 | 110 115 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) − 1 ) / ( 2 ↑ 𝑗 ) ) ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) |
| 117 | 103 116 | eqbrtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑗 ) ) ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) |
| 118 | 1 2 3 4 | mbfi1fseqlem2 | ⊢ ( 𝑗 ∈ ℕ → ( 𝐺 ‘ 𝑗 ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) ) ) |
| 119 | 62 118 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐺 ‘ 𝑗 ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) ) ) |
| 120 | 119 | fveq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) ) ‘ 𝑥 ) ) |
| 121 | ovex | ⊢ ( 𝑗 𝐽 𝑥 ) ∈ V | |
| 122 | vex | ⊢ 𝑗 ∈ V | |
| 123 | 121 122 | ifex | ⊢ if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) ∈ V |
| 124 | c0ex | ⊢ 0 ∈ V | |
| 125 | 123 124 | ifex | ⊢ if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) ∈ V |
| 126 | eqid | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) ) | |
| 127 | 126 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) ∈ V ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) ) |
| 128 | 80 125 127 | sylancl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) ) |
| 129 | 75 120 128 | 3eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) = if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) ) |
| 130 | 10 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( abs ‘ 𝑥 ) ∈ ℝ ) |
| 131 | 15 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 132 | 62 | nnred | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑗 ∈ ℝ ) |
| 133 | 11 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 134 | 133 12 | sylib | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 135 | 134 | simprd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 136 | 130 64 | addge01d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( abs ‘ 𝑥 ) ≤ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 137 | 135 136 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( abs ‘ 𝑥 ) ≤ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) ) |
| 138 | 60 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑘 ∈ ℕ ) |
| 139 | 138 | nnred | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑘 ∈ ℝ ) |
| 140 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) | |
| 141 | 131 139 140 | ltled | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑘 ) |
| 142 | eluzle | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) → 𝑘 ≤ 𝑗 ) | |
| 143 | 142 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑘 ≤ 𝑗 ) |
| 144 | 131 139 132 141 143 | letrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑗 ) |
| 145 | 130 131 132 137 144 | letrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( abs ‘ 𝑥 ) ≤ 𝑗 ) |
| 146 | 80 132 | absled | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( abs ‘ 𝑥 ) ≤ 𝑗 ↔ ( - 𝑗 ≤ 𝑥 ∧ 𝑥 ≤ 𝑗 ) ) ) |
| 147 | 145 146 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( - 𝑗 ≤ 𝑥 ∧ 𝑥 ≤ 𝑗 ) ) |
| 148 | 147 | simpld | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → - 𝑗 ≤ 𝑥 ) |
| 149 | 147 | simprd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑥 ≤ 𝑗 ) |
| 150 | 132 | renegcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → - 𝑗 ∈ ℝ ) |
| 151 | elicc2 | ⊢ ( ( - 𝑗 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) ↔ ( 𝑥 ∈ ℝ ∧ - 𝑗 ≤ 𝑥 ∧ 𝑥 ≤ 𝑗 ) ) ) | |
| 152 | 150 132 151 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) ↔ ( 𝑥 ∈ ℝ ∧ - 𝑗 ≤ 𝑥 ∧ 𝑥 ≤ 𝑗 ) ) ) |
| 153 | 80 148 149 152 | mpbir3and | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) ) |
| 154 | 153 | iftrued | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) = if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) ) |
| 155 | simpr | ⊢ ( ( 𝑚 = 𝑗 ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑥 ) | |
| 156 | 155 | fveq2d | ⊢ ( ( 𝑚 = 𝑗 ∧ 𝑦 = 𝑥 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 157 | simpl | ⊢ ( ( 𝑚 = 𝑗 ∧ 𝑦 = 𝑥 ) → 𝑚 = 𝑗 ) | |
| 158 | 157 | oveq2d | ⊢ ( ( 𝑚 = 𝑗 ∧ 𝑦 = 𝑥 ) → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝑗 ) ) |
| 159 | 156 158 | oveq12d | ⊢ ( ( 𝑚 = 𝑗 ∧ 𝑦 = 𝑥 ) → ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) |
| 160 | 159 | fveq2d | ⊢ ( ( 𝑚 = 𝑗 ∧ 𝑦 = 𝑥 ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ) |
| 161 | 160 158 | oveq12d | ⊢ ( ( 𝑚 = 𝑗 ∧ 𝑦 = 𝑥 ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) |
| 162 | ovex | ⊢ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ∈ V | |
| 163 | 161 3 162 | ovmpoa | ⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝑗 𝐽 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) |
| 164 | 62 80 163 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝑗 𝐽 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) |
| 165 | 108 86 | nndivred | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ∈ ℝ ) |
| 166 | flle | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) | |
| 167 | 99 166 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) |
| 168 | ledivmul2 | ⊢ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( ( 2 ↑ 𝑗 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑗 ) ) ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ) | |
| 169 | 108 64 87 113 168 | syl112anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ) |
| 170 | 167 169 | mpbird | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 171 | 9 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑥 ∈ ℂ ) |
| 172 | 171 | absge0d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 0 ≤ ( abs ‘ 𝑥 ) ) |
| 173 | 64 130 | addge02d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 0 ≤ ( abs ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 174 | 172 173 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐹 ‘ 𝑥 ) ≤ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) ) |
| 175 | 64 131 132 174 144 | letrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐹 ‘ 𝑥 ) ≤ 𝑗 ) |
| 176 | 165 64 132 170 175 | letrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ≤ 𝑗 ) |
| 177 | 164 176 | eqbrtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 ) |
| 178 | 177 | iftrued | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) = ( 𝑗 𝐽 𝑥 ) ) |
| 179 | 178 164 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) |
| 180 | 129 154 179 | 3eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) |
| 181 | 117 63 180 | 3brtr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 𝑗 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ) |
| 182 | 180 170 | eqbrtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 183 | 18 20 57 59 69 82 181 182 | climsqz | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) |
| 184 | 17 183 | rexlimddv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) |
| 185 | 184 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) |
| 186 | 34 | mptex | ⊢ ( 𝑚 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 , ( 𝑚 𝐽 𝑥 ) , 𝑚 ) , 0 ) ) ) ∈ V |
| 187 | 4 186 | eqeltri | ⊢ 𝐺 ∈ V |
| 188 | feq1 | ⊢ ( 𝑔 = 𝐺 → ( 𝑔 : ℕ ⟶ dom ∫1 ↔ 𝐺 : ℕ ⟶ dom ∫1 ) ) | |
| 189 | fveq1 | ⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) | |
| 190 | 189 | breq2d | ⊢ ( 𝑔 = 𝐺 → ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ↔ 0𝑝 ∘r ≤ ( 𝐺 ‘ 𝑛 ) ) ) |
| 191 | fveq1 | ⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ ( 𝑛 + 1 ) ) = ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) | |
| 192 | 189 191 | breq12d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ↔ ( 𝐺 ‘ 𝑛 ) ∘r ≤ ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 193 | 190 192 | anbi12d | ⊢ ( 𝑔 = 𝐺 → ( ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ↔ ( 0𝑝 ∘r ≤ ( 𝐺 ‘ 𝑛 ) ∧ ( 𝐺 ‘ 𝑛 ) ∘r ≤ ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 194 | 193 | ralbidv | ⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ↔ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝐺 ‘ 𝑛 ) ∧ ( 𝐺 ‘ 𝑛 ) ∘r ≤ ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 195 | 189 | fveq1d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 196 | 195 | mpteq2dv | ⊢ ( 𝑔 = 𝐺 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 197 | 196 | breq1d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
| 198 | 197 | ralbidv | ⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
| 199 | 188 194 198 | 3anbi123d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝐺 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝐺 ‘ 𝑛 ) ∧ ( 𝐺 ‘ 𝑛 ) ∘r ≤ ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 200 | 187 199 | spcev | ⊢ ( ( 𝐺 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝐺 ‘ 𝑛 ) ∧ ( 𝐺 ‘ 𝑛 ) ∘r ≤ ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
| 201 | 5 7 185 200 | syl3anc | ⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |