This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mbfi1flim . (Contributed by Mario Carneiro, 5-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfi1flim.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| mbfi1flimlem.2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) | ||
| Assertion | mbfi1flimlem | ⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfi1flim.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| 2 | mbfi1flimlem.2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) | |
| 3 | 2 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 4 | 2 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 5 | 4 1 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ∈ MblFn ) |
| 6 | 3 5 | mbfpos | ⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ∈ MblFn ) |
| 7 | 0re | ⊢ 0 ∈ ℝ | |
| 8 | ifcl | ⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ∈ ℝ ) | |
| 9 | 3 7 8 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ∈ ℝ ) |
| 10 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) → 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) | |
| 11 | 7 3 10 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) |
| 12 | elrege0 | ⊢ ( if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ∈ ( 0 [,) +∞ ) ↔ ( if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ∈ ℝ ∧ 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) | |
| 13 | 9 11 12 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 14 | 13 | fmpttd | ⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 15 | 6 14 | mbfi1fseq | ⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ) |
| 16 | 3 | renegcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → - ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 17 | 3 5 | mbfneg | ⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ - ( 𝐹 ‘ 𝑦 ) ) ∈ MblFn ) |
| 18 | 16 17 | mbfpos | ⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ∈ MblFn ) |
| 19 | ifcl | ⊢ ( ( - ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ∈ ℝ ) | |
| 20 | 16 7 19 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ∈ ℝ ) |
| 21 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ - ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) → 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) | |
| 22 | 7 16 21 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) |
| 23 | elrege0 | ⊢ ( if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ∈ ( 0 [,) +∞ ) ↔ ( if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ∈ ℝ ∧ 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) | |
| 24 | 20 22 23 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 25 | 24 | fmpttd | ⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 26 | 18 25 | mbfi1fseq | ⊢ ( 𝜑 → ∃ ℎ ( ℎ : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( ℎ ‘ 𝑛 ) ∧ ( ℎ ‘ 𝑛 ) ∘r ≤ ( ℎ ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ) |
| 27 | exdistrv | ⊢ ( ∃ 𝑓 ∃ ℎ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ∧ ( ℎ : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( ℎ ‘ 𝑛 ) ∧ ( ℎ ‘ 𝑛 ) ∘r ≤ ( ℎ ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ) ↔ ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ∧ ∃ ℎ ( ℎ : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( ℎ ‘ 𝑛 ) ∧ ( ℎ ‘ 𝑛 ) ∘r ≤ ( ℎ ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ) ) | |
| 28 | 3simpb | ⊢ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) → ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ) | |
| 29 | 3simpb | ⊢ ( ( ℎ : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( ℎ ‘ 𝑛 ) ∧ ( ℎ ‘ 𝑛 ) ∘r ≤ ( ℎ ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) → ( ℎ : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ) | |
| 30 | 28 29 | anim12i | ⊢ ( ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ∧ ( ℎ : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( ℎ ‘ 𝑛 ) ∧ ( ℎ ‘ 𝑛 ) ∘r ≤ ( ℎ ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ) → ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ∧ ( ℎ : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ) ) |
| 31 | an4 | ⊢ ( ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ∧ ( ℎ : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ) ↔ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ∧ ( ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ) ) | |
| 32 | 30 31 | sylib | ⊢ ( ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ∧ ( ℎ : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( ℎ ‘ 𝑛 ) ∧ ( ℎ ‘ 𝑛 ) ∘r ≤ ( ℎ ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ) → ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ∧ ( ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ) ) |
| 33 | r19.26 | ⊢ ( ∀ 𝑥 ∈ ℝ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ↔ ( ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ) | |
| 34 | i1fsub | ⊢ ( ( 𝑥 ∈ dom ∫1 ∧ 𝑦 ∈ dom ∫1 ) → ( 𝑥 ∘f − 𝑦 ) ∈ dom ∫1 ) | |
| 35 | 34 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ ( 𝑥 ∈ dom ∫1 ∧ 𝑦 ∈ dom ∫1 ) ) → ( 𝑥 ∘f − 𝑦 ) ∈ dom ∫1 ) |
| 36 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) → 𝑓 : ℕ ⟶ dom ∫1 ) | |
| 37 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) → ℎ : ℕ ⟶ dom ∫1 ) | |
| 38 | nnex | ⊢ ℕ ∈ V | |
| 39 | 38 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) → ℕ ∈ V ) |
| 40 | inidm | ⊢ ( ℕ ∩ ℕ ) = ℕ | |
| 41 | 35 36 37 39 39 40 | off | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) → ( 𝑓 ∘f ∘f − ℎ ) : ℕ ⟶ dom ∫1 ) |
| 42 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 43 | 42 | breq2d | ⊢ ( 𝑦 = 𝑥 → ( 0 ≤ ( 𝐹 ‘ 𝑦 ) ↔ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 44 | 43 42 | ifbieq1d | ⊢ ( 𝑦 = 𝑥 → if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) = if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 45 | eqid | ⊢ ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) | |
| 46 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 47 | c0ex | ⊢ 0 ∈ V | |
| 48 | 46 47 | ifex | ⊢ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V |
| 49 | 44 45 48 | fvmpt | ⊢ ( 𝑥 ∈ ℝ → ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) = if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 50 | 49 | breq2d | ⊢ ( 𝑥 ∈ ℝ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ↔ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 51 | 42 | negeqd | ⊢ ( 𝑦 = 𝑥 → - ( 𝐹 ‘ 𝑦 ) = - ( 𝐹 ‘ 𝑥 ) ) |
| 52 | 51 | breq2d | ⊢ ( 𝑦 = 𝑥 → ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) ↔ 0 ≤ - ( 𝐹 ‘ 𝑥 ) ) ) |
| 53 | 52 51 | ifbieq1d | ⊢ ( 𝑦 = 𝑥 → if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) = if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 54 | eqid | ⊢ ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) | |
| 55 | negex | ⊢ - ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 56 | 55 47 | ifex | ⊢ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V |
| 57 | 53 54 56 | fvmpt | ⊢ ( 𝑥 ∈ ℝ → ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) = if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 58 | 57 | breq2d | ⊢ ( 𝑥 ∈ ℝ → ( ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ↔ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 59 | 50 58 | anbi12d | ⊢ ( 𝑥 ∈ ℝ → ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ↔ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 60 | 59 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ↔ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 61 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 62 | 1zzd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) → 1 ∈ ℤ ) | |
| 63 | simprl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) | |
| 64 | 38 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ V |
| 65 | 64 | a1i | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) → ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ V ) |
| 66 | simprr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) → ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) | |
| 67 | 36 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑓 ‘ 𝑛 ) ∈ dom ∫1 ) |
| 68 | i1ff | ⊢ ( ( 𝑓 ‘ 𝑛 ) ∈ dom ∫1 → ( 𝑓 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | |
| 69 | 67 68 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑓 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 70 | 69 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 71 | 70 | an32s | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 72 | 71 | recnd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℂ ) |
| 73 | 72 | fmpttd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) : ℕ ⟶ ℂ ) |
| 74 | 73 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) : ℕ ⟶ ℂ ) |
| 75 | 74 | ffvelcdmda | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 76 | 37 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑛 ∈ ℕ ) → ( ℎ ‘ 𝑛 ) ∈ dom ∫1 ) |
| 77 | i1ff | ⊢ ( ( ℎ ‘ 𝑛 ) ∈ dom ∫1 → ( ℎ ‘ 𝑛 ) : ℝ ⟶ ℝ ) | |
| 78 | 76 77 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑛 ∈ ℕ ) → ( ℎ ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 79 | 78 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 80 | 79 | an32s | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 81 | 80 | recnd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℂ ) |
| 82 | 81 | fmpttd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) : ℕ ⟶ ℂ ) |
| 83 | 82 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) → ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) : ℕ ⟶ ℂ ) |
| 84 | 83 | ffvelcdmda | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 85 | 36 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) → 𝑓 Fn ℕ ) |
| 86 | 37 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) → ℎ Fn ℕ ) |
| 87 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) = ( 𝑓 ‘ 𝑘 ) ) | |
| 88 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑘 ∈ ℕ ) → ( ℎ ‘ 𝑘 ) = ( ℎ ‘ 𝑘 ) ) | |
| 89 | 85 86 39 39 40 87 88 | ofval | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑘 ) = ( ( 𝑓 ‘ 𝑘 ) ∘f − ( ℎ ‘ 𝑘 ) ) ) |
| 90 | 89 | fveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑘 ) ‘ 𝑥 ) = ( ( ( 𝑓 ‘ 𝑘 ) ∘f − ( ℎ ‘ 𝑘 ) ) ‘ 𝑥 ) ) |
| 91 | 90 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑘 ) ‘ 𝑥 ) = ( ( ( 𝑓 ‘ 𝑘 ) ∘f − ( ℎ ‘ 𝑘 ) ) ‘ 𝑥 ) ) |
| 92 | 36 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ dom ∫1 ) |
| 93 | i1ff | ⊢ ( ( 𝑓 ‘ 𝑘 ) ∈ dom ∫1 → ( 𝑓 ‘ 𝑘 ) : ℝ ⟶ ℝ ) | |
| 94 | ffn | ⊢ ( ( 𝑓 ‘ 𝑘 ) : ℝ ⟶ ℝ → ( 𝑓 ‘ 𝑘 ) Fn ℝ ) | |
| 95 | 92 93 94 | 3syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) Fn ℝ ) |
| 96 | 37 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑘 ∈ ℕ ) → ( ℎ ‘ 𝑘 ) ∈ dom ∫1 ) |
| 97 | i1ff | ⊢ ( ( ℎ ‘ 𝑘 ) ∈ dom ∫1 → ( ℎ ‘ 𝑘 ) : ℝ ⟶ ℝ ) | |
| 98 | ffn | ⊢ ( ( ℎ ‘ 𝑘 ) : ℝ ⟶ ℝ → ( ℎ ‘ 𝑘 ) Fn ℝ ) | |
| 99 | 96 97 98 | 3syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑘 ∈ ℕ ) → ( ℎ ‘ 𝑘 ) Fn ℝ ) |
| 100 | reex | ⊢ ℝ ∈ V | |
| 101 | 100 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑘 ∈ ℕ ) → ℝ ∈ V ) |
| 102 | inidm | ⊢ ( ℝ ∩ ℝ ) = ℝ | |
| 103 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑥 ) = ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑥 ) ) | |
| 104 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ℎ ‘ 𝑘 ) ‘ 𝑥 ) = ( ( ℎ ‘ 𝑘 ) ‘ 𝑥 ) ) | |
| 105 | 95 99 101 101 102 103 104 | ofval | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝑓 ‘ 𝑘 ) ∘f − ( ℎ ‘ 𝑘 ) ) ‘ 𝑥 ) = ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑥 ) − ( ( ℎ ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
| 106 | 91 105 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑘 ) ‘ 𝑥 ) = ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑥 ) − ( ( ℎ ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
| 107 | 106 | an32s | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑘 ) ‘ 𝑥 ) = ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑥 ) − ( ( ℎ ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
| 108 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑛 ) = ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑘 ) ) | |
| 109 | 108 | fveq1d | ⊢ ( 𝑛 = 𝑘 → ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) = ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 110 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) | |
| 111 | fvex | ⊢ ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑘 ) ‘ 𝑥 ) ∈ V | |
| 112 | 109 110 111 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) = ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 113 | 112 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) = ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 114 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑘 ) ) | |
| 115 | 114 | fveq1d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 116 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) | |
| 117 | fvex | ⊢ ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑥 ) ∈ V | |
| 118 | 115 116 117 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) = ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 119 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( ℎ ‘ 𝑛 ) = ( ℎ ‘ 𝑘 ) ) | |
| 120 | 119 | fveq1d | ⊢ ( 𝑛 = 𝑘 → ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) = ( ( ℎ ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 121 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) | |
| 122 | fvex | ⊢ ( ( ℎ ‘ 𝑘 ) ‘ 𝑥 ) ∈ V | |
| 123 | 120 121 122 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) = ( ( ℎ ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 124 | 118 123 | oveq12d | ⊢ ( 𝑘 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ) = ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑥 ) − ( ( ℎ ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
| 125 | 124 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ) = ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑥 ) − ( ( ℎ ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
| 126 | 107 113 125 | 3eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) = ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ) ) |
| 127 | 126 | adantlr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) = ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ) ) |
| 128 | 61 62 63 65 66 75 84 127 | climsub | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) → ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) − if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 129 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) → 𝐹 : ℝ ⟶ ℝ ) |
| 130 | 129 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 131 | max0sub | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ → ( if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) − if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 132 | 130 131 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) → ( if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) − if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 133 | 132 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) → ( if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) − if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 134 | 128 133 | breqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) → ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) |
| 135 | 134 | ex | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) → ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
| 136 | 60 135 | sylbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) → ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
| 137 | 136 | ralimdva | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) → ( ∀ 𝑥 ∈ ℝ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) → ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
| 138 | ovex | ⊢ ( 𝑓 ∘f ∘f − ℎ ) ∈ V | |
| 139 | feq1 | ⊢ ( 𝑔 = ( 𝑓 ∘f ∘f − ℎ ) → ( 𝑔 : ℕ ⟶ dom ∫1 ↔ ( 𝑓 ∘f ∘f − ℎ ) : ℕ ⟶ dom ∫1 ) ) | |
| 140 | fveq1 | ⊢ ( 𝑔 = ( 𝑓 ∘f ∘f − ℎ ) → ( 𝑔 ‘ 𝑛 ) = ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑛 ) ) | |
| 141 | 140 | fveq1d | ⊢ ( 𝑔 = ( 𝑓 ∘f ∘f − ℎ ) → ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 142 | 141 | mpteq2dv | ⊢ ( 𝑔 = ( 𝑓 ∘f ∘f − ℎ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 143 | 142 | breq1d | ⊢ ( 𝑔 = ( 𝑓 ∘f ∘f − ℎ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
| 144 | 143 | ralbidv | ⊢ ( 𝑔 = ( 𝑓 ∘f ∘f − ℎ ) → ( ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
| 145 | 139 144 | anbi12d | ⊢ ( 𝑔 = ( 𝑓 ∘f ∘f − ℎ ) → ( ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝑓 ∘f ∘f − ℎ ) : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 146 | 138 145 | spcev | ⊢ ( ( ( 𝑓 ∘f ∘f − ℎ ) : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑓 ∘f ∘f − ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
| 147 | 41 137 146 | syl6an | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) → ( ∀ 𝑥 ∈ ℝ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 148 | 33 147 | biimtrrid | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ) → ( ( ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 149 | 148 | expimpd | ⊢ ( 𝜑 → ( ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ℎ : ℕ ⟶ dom ∫1 ) ∧ ( ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 150 | 32 149 | syl5 | ⊢ ( 𝜑 → ( ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ∧ ( ℎ : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( ℎ ‘ 𝑛 ) ∧ ( ℎ ‘ 𝑛 ) ∘r ≤ ( ℎ ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 151 | 150 | exlimdvv | ⊢ ( 𝜑 → ( ∃ 𝑓 ∃ ℎ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ∧ ( ℎ : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( ℎ ‘ 𝑛 ) ∧ ( ℎ ‘ 𝑛 ) ∘r ≤ ( ℎ ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 152 | 27 151 | biimtrrid | ⊢ ( 𝜑 → ( ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ∧ ∃ ℎ ( ℎ : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( ℎ ‘ 𝑛 ) ∧ ( ℎ ‘ 𝑛 ) ∘r ≤ ( ℎ ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑦 ) , - ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 153 | 15 26 152 | mp2and | ⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |