This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decompose a real number into positive and negative parts. (Contributed by Mario Carneiro, 6-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | max0sub | ⊢ ( 𝐴 ∈ ℝ → ( if ( 0 ≤ 𝐴 , 𝐴 , 0 ) − if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red | ⊢ ( 𝐴 ∈ ℝ → 0 ∈ ℝ ) | |
| 2 | id | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) | |
| 3 | iftrue | ⊢ ( 0 ≤ 𝐴 → if ( 0 ≤ 𝐴 , 𝐴 , 0 ) = 𝐴 ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → if ( 0 ≤ 𝐴 , 𝐴 , 0 ) = 𝐴 ) |
| 5 | 0xr | ⊢ 0 ∈ ℝ* | |
| 6 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → - 𝐴 ∈ ℝ ) |
| 8 | 7 | rexrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → - 𝐴 ∈ ℝ* ) |
| 9 | le0neg2 | ⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 ↔ - 𝐴 ≤ 0 ) ) | |
| 10 | 9 | biimpa | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → - 𝐴 ≤ 0 ) |
| 11 | xrmaxeq | ⊢ ( ( 0 ∈ ℝ* ∧ - 𝐴 ∈ ℝ* ∧ - 𝐴 ≤ 0 ) → if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) = 0 ) | |
| 12 | 5 8 10 11 | mp3an2i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) = 0 ) |
| 13 | 4 12 | oveq12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( if ( 0 ≤ 𝐴 , 𝐴 , 0 ) − if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) ) = ( 𝐴 − 0 ) ) |
| 14 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 15 | 14 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℂ ) |
| 16 | 15 | subid1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 − 0 ) = 𝐴 ) |
| 17 | 13 16 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( if ( 0 ≤ 𝐴 , 𝐴 , 0 ) − if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) ) = 𝐴 ) |
| 18 | rexr | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) | |
| 19 | 18 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → 𝐴 ∈ ℝ* ) |
| 20 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → 𝐴 ≤ 0 ) | |
| 21 | xrmaxeq | ⊢ ( ( 0 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 0 ) → if ( 0 ≤ 𝐴 , 𝐴 , 0 ) = 0 ) | |
| 22 | 5 19 20 21 | mp3an2i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → if ( 0 ≤ 𝐴 , 𝐴 , 0 ) = 0 ) |
| 23 | le0neg1 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 0 ↔ 0 ≤ - 𝐴 ) ) | |
| 24 | 23 | biimpa | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → 0 ≤ - 𝐴 ) |
| 25 | 24 | iftrued | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) = - 𝐴 ) |
| 26 | 22 25 | oveq12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → ( if ( 0 ≤ 𝐴 , 𝐴 , 0 ) − if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) ) = ( 0 − - 𝐴 ) ) |
| 27 | df-neg | ⊢ - - 𝐴 = ( 0 − - 𝐴 ) | |
| 28 | 14 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → 𝐴 ∈ ℂ ) |
| 29 | 28 | negnegd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → - - 𝐴 = 𝐴 ) |
| 30 | 27 29 | eqtr3id | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → ( 0 − - 𝐴 ) = 𝐴 ) |
| 31 | 26 30 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → ( if ( 0 ≤ 𝐴 , 𝐴 , 0 ) − if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) ) = 𝐴 ) |
| 32 | 1 2 17 31 | lecasei | ⊢ ( 𝐴 ∈ ℝ → ( if ( 0 ≤ 𝐴 , 𝐴 , 0 ) − if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) ) = 𝐴 ) |