This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any real measurable function has a sequence of simple functions that converges to it. (Contributed by Mario Carneiro, 5-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfi1flim.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| mbfi1flim.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) | ||
| Assertion | mbfi1flim | ⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfi1flim.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| 2 | mbfi1flim.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) | |
| 3 | iftrue | ⊢ ( 𝑦 ∈ 𝐴 → if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 4 | 3 | mpteq2ia | ⊢ ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑦 ) ) |
| 5 | 2 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 6 | 5 1 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑦 ) ) ∈ MblFn ) |
| 7 | 4 6 | eqeltrid | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ∈ MblFn ) |
| 8 | fvex | ⊢ ( 𝐹 ‘ 𝑦 ) ∈ V | |
| 9 | c0ex | ⊢ 0 ∈ V | |
| 10 | 8 9 | ifex | ⊢ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ∈ V |
| 11 | 10 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ∈ V ) |
| 12 | 7 11 | mbfdm2 | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 13 | mblss | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) | |
| 14 | 12 13 | syl | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 15 | rembl | ⊢ ℝ ∈ dom vol | |
| 16 | 15 | a1i | ⊢ ( 𝜑 → ℝ ∈ dom vol ) |
| 17 | eldifn | ⊢ ( 𝑦 ∈ ( ℝ ∖ 𝐴 ) → ¬ 𝑦 ∈ 𝐴 ) | |
| 18 | 17 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℝ ∖ 𝐴 ) ) → ¬ 𝑦 ∈ 𝐴 ) |
| 19 | 18 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℝ ∖ 𝐴 ) ) → if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) = 0 ) |
| 20 | 14 16 11 19 7 | mbfss | ⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ∈ MblFn ) |
| 21 | 2 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 22 | 0red | ⊢ ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝐴 ) → 0 ∈ ℝ ) | |
| 23 | 21 22 | ifclda | ⊢ ( 𝜑 → if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ∈ ℝ ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ∈ ℝ ) |
| 25 | 24 | fmpttd | ⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) : ℝ ⟶ ℝ ) |
| 26 | 20 25 | mbfi1flimlem | ⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ) |
| 27 | ssralv | ⊢ ( 𝐴 ⊆ ℝ → ( ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ) | |
| 28 | 14 27 | syl | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ) |
| 29 | 14 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 30 | eleq1w | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) | |
| 31 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 32 | 30 31 | ifbieq1d | ⊢ ( 𝑦 = 𝑥 → if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) = if ( 𝑥 ∈ 𝐴 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 33 | eqid | ⊢ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) | |
| 34 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 35 | 34 9 | ifex | ⊢ if ( 𝑥 ∈ 𝐴 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V |
| 36 | 32 33 35 | fvmpt | ⊢ ( 𝑥 ∈ ℝ → ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ 𝐴 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 37 | 29 36 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ 𝐴 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 38 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( 𝐹 ‘ 𝑥 ) , 0 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 39 | 38 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , ( 𝐹 ‘ 𝑥 ) , 0 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 40 | 37 39 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 41 | 40 | breq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ↔ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
| 42 | 41 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
| 43 | 28 42 | sylibd | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
| 44 | 43 | anim2d | ⊢ ( 𝜑 → ( ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) → ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 45 | 44 | eximdv | ⊢ ( 𝜑 → ( ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 46 | 26 45 | mpd | ⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |